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From Editors
Differential geometry is proving to be an increasingly powerful tool that improves its ties to other

branches of mathematics such as analysis, topology, algebra, PDEs, and so on, as well as to theoretical
physics research.

The growing number of publications in the field of submanifolds was probably the main reason
to organize the ”International Workshop on Theory of Submanifolds”, which took place at Istanbul
Technical University, Turkey, from June 2 to June 4, 2016. One of the main features of the conference
is the originality of its topic, being the only one focussing particularly on submanifold theory in the
last few years. This is remarkable since submanifold theory is a very broad and omnipresent topic,
going from surface theory in three-space, with applications in engineering and computer vision for
example, to very abstract settings with high dimension and codimension, some of them appearing in
modern physical theories.

This volume, containing the proceedings of the above mentioned workshop, provides very recent re-
sults mainly on the theory of submanifolds, which the reader would be interested in getting acquainted
with.

The book is divided into three parts, each of them having a distinct editor. The first part contains
surveys on submanifolds with certain properties, in particular on surfaces. Part two is the biggest one,
and is devoted to the theory of submanifolds. The last part extends the main subject of the workshop
toward some related topics, such as some geometrical structures which are extended from a manifold
to the whole space containing the manifold (e.g. the total space of its cotangent bundle).

The experience of the contributors to the Proceedings is illustrated by their publications in this
field and the freshness of this conference was given mainly by the presence of many young mathema-
ticians. The workshop was very successful, despite the critical period of this conference, where many
participants had to cancel their participation for reasons beyond their control.

All articles included here passed the usual referee process.
Our warm thanks go to all those who contributed to this book by their work, to all participants of

the workshop, to the referees of the Proceedings, to the host institution for organizing the conference
and last but not least to our sponsors.

Editors: N. C.Turgay, E. Ö. Canfes, J. Van der Veken , C-L. Bejan
September, 2017
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� Tuğçe Çolak

Editorial Board of Proceedings Book
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Foreword
The theory of submanifolds was studied since the invention of calculus and it was started with

differential geometry of plane curves. Since then the theory of submanifolds has been developed as
an important part of pure and applied mathematics. In recent times, submanifold theory also plays
some important roles in computer design, image processing, economic modeling, arts and vision,
mathematical physics, relativity theory and cosmology as well as in mathematical biology.

There are two aspects of geometry of submanifolds, namely, intrinsic geometry and extrinsic ge-
ometry of submanifolds. Intrinsic differential geometry of submanifolds describes the geometry inside
the submanifolds. Extrinsic geometry of submanifolds deals with the shape of submanifolds as subsets
of the ambient space.

An important result connecting intrinsic and extrinsic geometry of submanifolds is the 1956 J. F.
Nash embedding theorem which states that every Riemannian manifold can be isometrically embedded
in a Euclidean space with sufficient high codimension. One important fundamental problem connecting
intrinsic geometry and extrinsic geometry of submanifolds is to establish simple optimal relations
between the main intrinsic invariants and the main extrinsic invariants of submanifolds as well as to
discover their applications.

Since the pioneering work of P. Fermat, L. Euler, G. Monge, and others done in the seventeenth and
eighteenth centuries, submanifold theory is still a very active vast research field in pure and applied
mathematics. It plays a very important role in the development of modern differential geometry. This
branch of mathematics is so far from being exhausted; in fact, only a small portion of an exceedingly
fruitful field has been cultivated, much more remains to be discovered in this and coming centuries.

This new series of the Proceedings Book International Workshop on Theory of Submanifolds is a
very welcome addition to the literature on the theory of submanifolds. The first volume of this series
contains important contribution to the field of submanifold theory. It includes many nice articles on the
following contemporary important research topics; submanifolds with parallel mean curvature, bihar-
monic and biconservative submanifolds, theory of finite type submanifolds, rotational hypersurfaces,
curve and surface theory, and quasi-Einstein manifolds.

I expect this new series of Proceedings Book International Workshop on Theory of Submanifolds
to play an important role in the future development of geometry of submanifolds for many coming
years.

Bang-Yen Chen
April 15, 2017

iii



Contents
From editors i

Committees of IWTS’16 ii

Foreword by Bang-Yen Chen iii

Contents iv

Surveys 1

A survey on submanifolds with nonpositive extrinsic curvature
by Samuel Canevari, Guilherme Machado de Freitas, Fernando Manfio

2-11

A short survey on surfaces sndowed with a canonical principal direction
by Alev Kelleci, Mahmut Ergüt

12-29

Global properties of biconservative surfaces in R3 and S3
by Simona Nistor, Cezar Oniciuc

30-56

Parallel mean curvature surfaces in four-dimensional homogeneous spaces
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2 by İlhan Gül

195-204

Hyper-Generalized Quasi Einstein Manifolds Satisfying Certain Ricci
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1 Introduction

One of the main problems in submanifold theory is to know whether given
complete Riemannian manifolds Mm and Nn, with m < n, there exists an
isometric immersion f : Mm → Nn. In case the ambient space is the Euclidean
space, the Nash embedding theorem says that there is an isometric embedding
f : Mm → Rn provided the codimension n −m is sufficiently large. For small
codimension, the answer in general depends on the geometries of M and N .
Isometric immersions f : Mm → Nn with low codimension and nonpositive
extrinsic curvature at any point must satisfy strong geometric conditions. The
simplest result along this line is that a surface with nonpositive curvature in R3

cannot be compact. This is a consequence of the well-know fact that at a point
of maximum of a distance function on a compact surface in R3 the Gaussian
curvature must be positive.

In the same direction, the Hilbert-Efimov theorem [4], [5] states that no
complete surface M with sectional curvature KM ≤ −δ2 < 0 can be isometri-
cally immersed in R3. A classical result by Tompkins [17] states that a compact
flat m-dimensional Riemannian manifold cannot be isometrically immersed in
R2m−1. Tompkins’s result was extended in a series of papers by Chern and
Kuiper [3], Moore [8], O’Neill [11], Otsuki [12] and Stiel [15], whose results can
be summarized as follows:

2



Theorem 1.1. Let f : Mm → Nn be an isometric immersion of a compact
Riemannian manifold M into a Cartan-Hadamard manifold N , with n ≤ 2m−1.
Then the sectional curvatures of M and N satisfy

sup
M

KM > inf
N
KN .

The aim of this paper is to survey on some recent extensions of Theorem
1.1, mostly for the case of complete cylindrically bounded submanifolds.

2 Bounded complete submanifolds with
scalar curvature bounded from

below

Let f : Mm → Nn be an isometric immersion. In the statement below and
the sequel, ρ stands for the distance function to a given reference point in
Mm, log(j) is the j-th iterate of the logarithm and t � 1 means that t is
sufficiently large. Also BN [R] denotes the closed geodesic ball with radius 0 <

R < min
{

injN (o) , π/2
√
b
}

centered at a point o of Nn, where injN (o) is the

injectivity radius of Nn at o and π/2
√
b is replaced by +∞ if b ≤ 0. Moreover,

KM (σ) denotes the sectional curvature of Mm at a point x ∈ Mm along the
plane σ ⊂ TxM , and similarly for Nn,

Kf (σ) := KM (σ)−KN (f∗σ)

is the extrinsic sectional curvature of f at x along σ and Krad
N stands for the

radial sectional curvature ofNn with respect to o, that is, the sectional curvature
of tangent planes to Nn containing the vector gradNr, where r is the distance
function to o in Nn. Finally, let Cb be the real function given by

Cb(t) =


√
b cot(

√
bt) if b > 0 and 0 < t <

π

2
√
b
,

1
t if b = 0 and t > 0,√
−b coth(

√
−bt) if b < 0 and t > 0.

Theorem 1.1 was extended by Jorge and Koutrofiotis [6] to bounded com-
plete submanifolds with scalar curvature bounded from below. Pigola, Rigoli
and Setti presented in [13] an extension of Theorem 1.1 with scalar curvature
satisfying

sM (x) ≥ −A2ρ2 (x)

J∏
j=1

(
log(j) (ρ (x))

)2
, ρ (x)� 1, (2.1)

for some constant A > 0 and some integer J ≥ 1 (where we use the definition in
which the scalar curvature and also the Ricci curvature in Section 5 are divided
by m− 1).
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Theorem 2.1 ([13]). Let f : Mm → Nn be an isometric immersion with
codimension p = n −m < m of a complete Riemannian manifold whose scalar
curvature satisfies (2.1). Assume that f(M) ⊂ BN [R]. If Krad

N ≤ b in BN [R],
then

sup
M

KM ≥ C2
b (R) + inf

BN [R]
KN . (2.2)

Note that if Nn = Qnb is the simply connected space form of constant sec-
tional curvature b and M = ∂BQn

b
[R] ⊂ Qnb is a geodesic sphere of radius R,

then equality (2.2) is achieved.

3 Cylindrically bounded submanifolds

In this section we will discuss an extension of Theorem 2.1 due to Aĺıas, Bessa
and Montenegro for the case of cylindrically bounded submanifolds. More pre-
cisely, in [1] they have provided an estimate for the extrinsic curvatures of com-
plete cylindrically bounded submanifolds of a Riemannian product Pn × Rk,
where cylindrically bounded means that there exists a (closed) geodesic ball
BP [R] of Pn, centered at a point o ∈ Pn with radius satisfying 0 < R <

min
{

injP (o) , π/2
√
b
}

(where π/2
√
b is replaced by +∞ if b ≤ 0), such that

f(M) ⊂ BP [R]× Rk. (3.1)

Otherwise, we say that f is cylindrically unbounded.

Theorem 3.1 ([1]). Let f : Mm → Pn × Rk be an isometric immersion with
codimension p = n+ k−m < m− k of a complete Riemannian manifold whose
scalar curvature satisfies (2.1). Assume that f is cylindrically bounded and that
Pn is complete. If Krad

P ≤ b in BP [R], then

sup
M

Kf ≥ C2
b (R) . (3.2)

Moreover,
sup
M

KM ≥ C2
b (R) + inf

BP [R]
KP . (3.3)

We point out that the codimension restriction p < m− k cannot be relaxed.
Actually, it implies that n > 2 and m > k + 1. In particular, in a three-
dimensional ambient space N3, that is, n + k = 3, we have that k = 0, and
therefore f(M) ⊂ BP [R]. In fact, the flat cylinder S1(R) × R ⊂ BR2 [R] × R
shows that the restriction p < m− k is necessary.

On the other hand, estimates (3.2) and (3.3) are sharp. Indeed, the function
Cb is well-known: the geodesic sphere ∂BQm

b
(R) of radius R in the simply con-

nected complete space form Qmb of constant sectional curvature b, with R < π
2
√
b

if b > 0, is an umbilical hypersurface with principal curvatures being precisely
Cb(R). This shows that its extrinsic and intrinsic sectional curvatures are con-
stant and equal to C2

b (R) and C2
b (R) + b, respectively, the latter following from

4



the former by the Gauss equation. Then, for every m > 2 and k ≥ 0 we can
consider Mm−1+k = ∂BQm

b
(R) × Rk and take f : Mm−1+k → BQm

b
[R] × Rk to

be the canonical isometric embedding. Therefore supM Kf and supM KM are
the constant extrinsic and intrinsic sectional curvatures C2

b (R) and C2
b (R) + b

of ∂BQm
b

(R), respectively.

Remark 3.2. The geometry of the Euclidean factor Rk plays essentially no role
in the proof of Theorem 3.1. Indeed, estimate (3.3) remains true if the former
is replaced by any Riemannian manifold Qk, which need not be even complete,
whereas for (3.2) the only requirement is that KQ be bounded from above. In
the next section we will discuss a more accurate conclusion than the one of
Theorem 3.1 (see Theorem 4.1 and comment below).

As a consequence of Theorem 3.1, the following results about extrinsic radius
were obtained.

Theorem 3.3. [1] Let f : Mm → Pn × Rl be an isometric immersion of a
compact Riemannian Mm with codimension p = n + l −m < m − l. Assume
that Pn is a complete Riemannian manifolds with a pole and radial sectional
curvature Krad

P ≤ b ≤ 0. Then, the extrinsic radius satisfies

Rf ≥ C−1b
(√

supKM − inf KN

)
.

In particular, if Pn = Rn we have that

Rf ≥
1√

supKM
.

Theorem 3.4. [1] Let f : Mm → Sn × Rl be an isometric immersion of a
compact Riemannian Mm with codimension p = n+ l−m < m− l. If supKM ≤
1, then

Rf ≥
π

2
.

4 Cylindrically bounded submanifolds:

a more general setting

The purpose of this section is to discuss a more accurate conclusion than the one
of Theorem 3.1. More precisely, the authors [2] understood how much extrinsic
(respectively, intrinsic) sectional curvature satisfying estimate (3.2) (respectively
(3.3)) appears depending on how low the codimension is. The idea is that the
lower the codimension is, the more extrinsic (respectively, intrinsic) sectional
curvature satisfying (3.2) (respectively (3.3)) will appear.

In the same way as in (3.1), an isometric immersion f : Mm → Pn ×Qk is
said to be cylindrically bounded if there exists a (closed) geodesic ball BP [R] of
Pn, centered at a point o ∈ Pn with radius R > 0, such that

f(M) ⊂ BP [R]×Qk, (4.1)

5



with 0 < R < min
{

injP (o) , π
2
√
b

}
, where π

2
√
b

is replaced by +∞ if b ≤ 0.

Theorem 4.1 ([2]). Let f : Mm → Pn × Qk be an isometric immersion with
codimension p = n+ k−m < m− k of a complete Riemannian manifold whose
radial sectional curvature Krad

M (x) satisfies

Krad
M (x) ≥ −A2ρ2 (x)

J∏
j=1

(
log(j) (ρ (x))

)2
, ρ (x)� 1. (4.2)

Assume that f is cylindrically bounded. If Krad
P ≤ b in BP [R], then

sup
M

min

{
max
σ⊂W

Kf (σ) : dimW > p+ k

}
≥ C2

b (R) . (4.3)

Moreover,

sup
M

min

{
max
σ⊂W

KM (σ) : dimW > p+ k

}
≥ C2

b (R) + inf
BP [R]

KP . (4.4)

The estimates of Theorem 4.1 are clearly better than the ones of Theorem
3.1. Actually, (4.3) and (4.4) reduce to (3.2) and (3.3), respectively, only in the
case of the highest allowed codimension p = m − 1 − k. On the other hand,
although one has a stronger assumption on the curvature of Mm, if (2.1) holds
but (4.2) does not, then, since the scalar curvature is an average of sectional
curvatures, we have that supM KM = +∞, and hence (3.3) is trivially satisfied.
Moreover, KP is clearly bounded in BP [R], thus if also KQ is bounded from
above, we conclude that supM Kf = +∞ by the Gauss equation, so that (3.2)
also holds trivially in this case. Finally, note that the same example considered
below Theorem 3.1 shows that our estimates (4.3) and (4.4) are also sharp.

5 Applications

In this section we will discuss some applications of Theorem 4.1. Denote by Rf
the extrinsic radius of a cylindrically bounded isometric immersion f , that is,
the smallest R for which (4.1) holds. A first application of Theorem 4.1 are the
following versions of Theorem 3.3 and 3.4.

Corollary 5.1 ([2]). Let f : Mm → Pn ×Qk be an isometric immersion with
codimension p = n + k − m < m − k of a complete Riemannian manifold
whose radial sectional curvature satisfies (4.2). Assume that Pn is a complete
Riemannian manifold with a pole and radial sectional curvatures Krad

P ≤ b ≤ 0.
If f is cylindrically bounded, then

sup
M

min

{
max
σ⊂W

Kf (σ) : dimW > p+ k

}
> −b

6



and the extrinsic radius satisfies

Rf ≥ C−1b

(√
sup
M

min

{
max
σ⊂W

Kf (σ) : dimW > p+ k

})
. (5.1)

In particular, if

sup
M

min

{
max
σ⊂W

Kf (σ) : dimW > p+ k

}
≤ −b,

then f is cylindrically unbounded.

Corollary 5.2 ([2]). Let f : Mm → Sn × Qk be an isometric immersion with
codimension p = n+ k−m < m− k of a complete Riemannian manifold whose
radial sectional curvature satisfies (4.2). If

sup
M

min

{
max
σ⊂W

KM (σ) : dimW > p+ k

}
≤ 1,

then
Rf ≥

π

2
. (5.2)

On the other hand, a sharp lower bound for the Ricci curvature of bounded
complete Euclidean hypersurfaces was obtained by Leung [7] and extended by
Veeravalli [18] to nonflat ambient space forms. For simplicity of notation we
shall denote by sup

M
Ric(M) the sup

X∈UM
Ric(X,X), where UM is the unitary

tangent bundle.

Theorem 5.3 ([18]). Let f : Mm → Qm+1
b be a complete hypersurface with

sectional curvature bounded away from −∞ such that f(M) ⊂ BQm+1
b

[R], with

R < π
2
√
b

if b > 0. Then

sup
M

Ric(M) ≥ C2
b (R) + b. (5.3)

Theorem 4.1 also gives an improvement of the above result, where we con-
sider hypersurfaces of much more general ambient spaces and obtain that es-
timate (5.3) actually holds for the scalar curvature. This shows the unifying
character of Theorem 4.1.

Corollary 5.4 ([2]). Let f : Mm → Pm+1 be a complete hypersurface whose
radial sectional curvatures satisfy (4.2). Assume that f(M) ⊂ BP [R], with R
as in Theorem 4.1. If Krad

P ≤ b in BP [R], then

sup
M

sM ≥ C2
b (R) + inf

BP [R]
KP .

Again observe that for the geodesic sphere Mm = ∂BQm+1
b

(R) of radius R in

Qm+1
b the above inequality is in fact an equality. Corollary 5.5 leads to similar

extrinsic radius results to Corollaries 5.1 and 5.2 and, in particular, a criterion
of unboundedness:

7



Corollary 5.5 ([2]). Let f : Mm → Pm+1 be a complete hypersurface whose ra-
dial sectional curvatures satisfy (4.2). Assume that Pm+1 is a complete Rieman-
nian manifold with a pole and sectional curvatures KP ≥ c and Krad

P ≤ b ≤ 0.
If f(M) is bounded, then supM sM > c− b and

Rf ≥ C−1b

(√
sup
M

sM − c
)
.

In particular, if supM sM ≤ c− b, then f (M) is unbounded.

Corollary 5.6 ([2]). Let f : Mm → Sm+1 be a complete hypersurface whose
radial sectional curvature satisfies (4.2). If supM sM ≤ 1, then

Rf ≥
π

2
.

Remark 5.7. One of the main tools to prove this kind of result, in particular
Theorem 4.1, is an algebraic lemma due to Otsuki [12], about symmetric bilinear
forms. On the other hand, a key ingredient to handle the noncompact case is
a maximum principle due to Omori [10] and generalized by Pigola-Rigoli-Setti
[13].

6 Conjecture

One of the most important open problems in the area of geometry of sub-
manifolds is an old conjecture on the higher-dimensional extension of Hilbert’s
classical theorem asserting that the complete hyperbolic plane H2 cannot be
isometrically immersed into three-dimensional Euclidean space R3. Hilbert’s
theorem was proven at the turn of the last century in [5] and was one of the
first global theorems from the Riemannian geometry of surfaces. It is quite nat-
ural to explore whether this result could be extended to higher dimensions. It
follows from Otsuki’s lemma that there are no m-dimensional submanifolds of
constant negative curvature in R2m−2. In R2m−1, Moore [9] showed that the
existence of an isometric immersion f : Hm → R2m−1 implies the existence
of a Chebyshev net on Hm, thereby extending the main step in the standard
proof of Hilbert’s theorem to m dimensions. However, despite the effort of
many geometers such as Tenenblat and Terng [16], Xavier [19], and Aminov, it
is remarkable that the conjectured extension of Hilbert’s theorem has not been
solved yet even in the next case m = 3. Most of the attempts were made by
trying to face the problem directly, exploring the fairly complete understanding
of the structure of m-dimensional submanifolds of constant curvature in R2m−1

provided by the study of the fundamental equations to reduce the question to a
problem of global analysis generalizing the sine-Gordon equation. But as it often
happens in mathematics, the answer for a conjecture may arise out of the so-
lution of a more general problem. Hilbert’s own theorem illustrates this point,
since it is just the special constant curvature case of Efimov’s much stronger
statement that a complete surface with sectional curvature K ≤ −c < 0 cannot

8



be immersed isometrically in R3. Generalizations to higher dimensions of this
stronger result have been in the direction of hypersurfaces [14] rather than to
codimension m − 1. Nevertheless, we point out that Theorem 4.1 leads to a
conjecture that goes right into the latter direction. Indeed, it is a natural ques-
tion to ask whether Theorem 4.1 is still true in the limiting case, that is, when
R = injP (o) = π

2
√
b
, where π

2
√
b

is replaced by +∞ if b ≤ 0, which motivates the

following:

Conjecture 6.1. Let f : Mm → Nn+l = Pn × Ql be an isometric immersion
with codimension p = n + l −m < m − l of a complete Riemannian manifold.
Assume that R = injP (o) = π

2
√
b
, where π

2
√
b

is replaced by +∞ if b ≤ 0. If

Krad
P ≤ b in BP [R], then

sup
M

min

{
max
σ⊂W

Kf (σ) : dimW > p+ l

}
≥ max {−b, 0} .

Moreover,

sup
M

min

{
max
σ⊂W

KM (σ) : dimW > p+ l

}
≥ max {−b, 0}+ inf

BP [R]
KP .

It is not clear the extent to which the above conjecture is true, but an
affirmative answer at least in the most important case Pn = Rn, l = 0, p = m−1
would provide the extension of Efimov’s theorem to codimension m − 1 and
consequently settle the problem of isometric immersions f : Hm → R2m−1.

Remark 6.2. We said that Conjecture 6.1 was the limiting case of Theorem 4.1.
However, we do not add hypothesis (4.2). Indeed, (4.2) is important only to
ensure that the Omori-Yau maximum principle for the Hessian holds on Mm.
This latter principle is one of our main tools to build the proof of Theorem
4.1, but the above conjecture seems to be inaccessible to techniques using it.
Moreover, removing (4.2) allows us to include the aforementioned extension of
Efimov’s theorem as an important particular case of the conjecture.
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1 Introduction

Let M̂ be a (semi-)Riemannian manifold, M a hypersurface of M̂ and X a
vector field tangent to M̂ . M is said to have a canonical principal direction
relative to X if the tangential projection of X to M gives a principal direction.
For example, a rotational hypersurface in Euclidean spaces has a canonical
principal direction relative to a vector field parallel to its rotation axis, [12]. It
turns out that when M̂ is a product space M̃ × R or a semi-Euclidean space,
some common interesting geometrical properties of hypersurfaces endowed with
a canonical principal direction relative to X occur if X is chosen to be a fixed
direction k (See Theorem 3.6, Theorem 3.13, Theorem 3.15, Theorem 4.1 and
Theorem 4.6).

Let Mn(c), c = ±1 denote the Riemannian space-form given by

Mn(c) =

{
Sn if c = 1,
Hn if c = −1.

We would like to note the following important property which relates con-
stant angle surfaces to surfaces with a canonical principal direction. The projec-
tion U of the unit vector field T tangent to the second factor R to the tangential
bundle of the surface is a principal direction for M with the corresponding prin-
cipal curvature equal to zero. Therefore, a constant angle surface in M2(c)×R is

12



endowed with canonical principal direction relative to T . There are many classi-
fication results obtained so far, in different ambient spaces, [1, 3, 5, 6, 13, 15, 18].

A recent natural problem is that appears in the context of constant angle
surfaces is to study those surfaces for which U remains a principal direction but
the corresponding principal curvature is different from zero. This problem was
studied in S2 × R [4] and H2 × R [7]. Further, this problem has been recently
studied in Euclidean spaces and semi-Euclidean spaces, (see in [10, 19, 20])
where T is replaced by a constant direction k.

On the other hand, in [8, 9, 11, 23] authors study generalized constant ratio
surfaces. A hypersurface M in a semi-Euclidean space En+1

t is said to be a
generalized constant ratio surfaces if the tangential component of its position
vector is a principal direction of M . It is well-known that planes and complete
hypersurfaces of En+1

t with constant sectional curvatures are trivial examples
of generalized constant ratio surfaces.

This paper is organized as follows. In Sect. 2, we mention the notation that
we use in this paper. In Sect. 3 and Sect.4, we present a short survey of recent
results on surfaces endowed with a canonical principle curvatures. In Sect. 5,
we show some of the results that we have recently obtained. In Sect. 6 we
present classifications of generalized constant ratio hypersurfaces in Minkowski
spaces.

2 Preliminaries

In this section, we would like to give a brief summary of basic results on
Lorentzian surfaces, (see for detail, [2, 21]).

Let Emt denote the semi-Euclideanm-space with the canonical semi-Euclidean
metric tensor of index t given by

g̃ =

m−t∑
i=1

dx2i −
m∑

j=m−t+1

dx2j ,

where x1, x2, . . . , xm are rectangular coordinates of the points of Emt .
Let Snt (r2) and Hnt−1(−r2) denote the de Sitter space-time and the hyperbolic

space of dimension n > 2 defined by

Snt (1/r2) = {x ∈ En+1
t : 〈x, x〉 = r−2},

Hnt−1(−1/r2) = {x ∈ En+1
t : 〈x, x〉 = −r−2}.

For a short notation, we put Hn0 (−1) = Hn and Sn0 (1) = Sn.
We would like to note that all further notations, basic definitions and basic

facts that we will use in this paper are described in [8, 23]. We also would like
to refer to [4, 7, 19, 20] for detailed information of definition and geometrical
interpretation of surfaces endowed with canonical principal direction.
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3 Surface endowed with canonical
principal direction in product spaces

In recent years, a lot of research has been done about M̃2 × R by considering
the unit vector field T tangent to the second factor, parallel along M̃2 × R. A
special case is when M̃ is a 2-dimensional Riemanmian space form, i.e., M̃ =
M2(c), c = ±1. A surface M in M2(c)×R is said to be endowed with canonical
principal direction (in short, CPD) if the projection of T , i.e. the canonical unit
vector tangent to the R−direction, onto the tangent space of M , is a principal
direction. In this case, T can be decomposed as

T = sin θU + cos θN

where N is the unit normal vector field of surface M . Here, SU = k1U for a
smooth function k1 where S is the shape operator of M in M2×R, respectively.
Note that we consider the case θ /∈

{
0, π2

}
to eliminate trivial cases.

In this section, we would like to present a survey of classification results
recently obtained. However, before we proceed, we would like to note that a
further generalization of this notion is isometric immersions which belongs to
the class A. An isometric immersion f : M → Sn × R is said to have this
property if U is an eigenvector of all shape operators of f , where M is an m-
dimensional submanifold of Sn × R. This class was introduced in [22], where a
complete description was given for hypersurfaces, and extended to submanifolds
of Sn × R in [17].

3.1 Surfaces in S2 × R
We may note that the study of CPD surfaces in S2 ×R was investigated in [4].
The following results were obtained in that paper.

Let M be a surface endowed with canonical principal direction in S2 × R.
By choosing an appropriate local coordinate system on M , one can see that the
induced metric g of M becomes

g = dx2 + β2(x, y)dy2.

Moreover, the shape operator S with respect to the basis { ∂∂x ,
∂
∂y} is given by

S =

(
θx 0

0 βx tan θ
β

)
.

(See [4].)

Remark 3.1. An analogous result for CPD surfaces in H2×R is obtained in [7].

First, we would like to give the following characterization for CPD surfaces
in S2 × R.
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Theorem 3.2. [5] Let M be an immersed in S2×R and p a point of M for which
θ(p) /∈ {0, π/2}. Then, U is a principal direction if and only if M considered as
a surface in E4 is normally flat.

The following classification result is obtained in [4].

Proposition 3.3. [4] A surface M immersed in S2 × R is a surface for which
U is a principal direction if and only if the immersion F is in the neighborhood
of a point p where θ(p) /∈

{
0, π2

}
given by

F : M −→ S2 × R
(x, y) 7−→ (F1(x, y), F2(x, y), F3(x, y), F4(x)),

where

Fj(x, y) =

∫ y

y0

αj(v) sin(ψ(x) + φ(v))dv

for j = 1, 2, 3, ψ′(x) = cos(θ(x)), F ′4(x) = sin(θ(x)) and (α1, α2, α3) is a curve
in S2 and F 2

1 +F 2
2 +F 2

3 = 1. Moreover α1, α2, α3, ψ and φ are functions on M
related by

α′j(y) =− cos(ψ(x) + φ(y))

∫ y

y0

αj(v) cos(ψ(x) + φ(v))dv

− sin(ψ(x) + φ(y))

∫ y

y0

αj(v) sin(ψ(x) + φ(v))dv.

A direct consequence of this proposition is

Corollary 3.4. [4] A surface M immersed in S2×R is a minimal surface with
U a principal direction if and only if the immersion F is (up to isometries of
S2 × R) in the neighborhood of a point p where θ /∈

{
0, π2

}
given by

F : M −→S2 × R,

(x, y) 7−→

(
sinx√
1 + c2

,

√
cos2 x+ c2 cos y√

1 + c2
,

√
cos2 x+ c2 sin y√

1 + c2
, F4(x)

)
with

F4(x) =

∫ x

0

c√
cos2(u) + c2

du.

Corollary 3.5. [4] A surface M immersed in S2×R is a flat surface with U a
principal direction if and only if the immersion F is (up to isometries of S2×R)
in the neighborhood of a point p where θ /∈

{
0, π2

}
given by

F : M →S2 × R,

(x, y) 7−→

(√
1 + d− x2√

1 + d
,
x cos y√

1 + d
,
x sin y√

1 + d
, F4(x)

)
with

F4(x) =

∫ x

0

√
d− u2√

1 + d− u2
du.
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3.2 Surfaces in H2 × R
In [7], the authors studied CPD surfaces in H2 × R.

Note that we have the following characterization.

Theorem 3.6. [7] Let M be a surface isometrically immersed in H2 × R such
that θ /∈ 0. U is a principal direction if and only if M is normally flat in R3

1×R.

Theorem 3.7. [7] If F : M → H2 × R is an isometric immersion with θ /∈{
0, π2

}
, then U is a principal direction if and only if F is given by

F (x, y) = (F1(x, y), F2(x, y), F3(x, y), F4(x)),

with Fj(x, y) = Aj(y) sinhφ(x) + Bj(y) coshφ(x), for j = 1, 2, 3 and F4(x) =∫ x
0

sin(θ(τ)dτ), where φ′(x) = cos(θ). The six functions Aj and Bj are found
in one of the following three cases.

• Case 1.

Aj(y) =

∫ y

0

Hj(τ) coshψ(τ)dτ + c1j ,

Bj(y) =

∫ y

0

Hj(τ) sinhψ(τ)dτ + c2j ,

H ′j(y) =Bj(y) sinhψ(y)−Aj(y) coshψ(y);

• Case 2.

Aj(y) =

∫ y

0

Hj(τ) sinhψ(τ)dτ + c1j ,

Bj(y) =

∫ y

0

Hj(τ) coshψ(τ)dτ + c2j ,

H ′j(y) =−Aj(y) sinhψ(y) +Bj(y) coshψ(y);

• Case 3.

Aj(y) =±
∫ y

0

Hj(τ)dτ + c1j ,

Bj(y) =

∫ y

0

Hj(τ)dτ + c2j ,

H ′j(y) =c2j ∓ c1j ;

where H = (H1, H2, H3) is a curve on the de Sitter space S21, ψ is a smooth
function on M and c1 = (c11, c12, c13), c2 = (c21, c22, c23) are constant vectors.

Remark 3.8. [7] In order to obtain a unified description, we note that in all
cases F is given by

F (x, y) =

(
A(y) sinhφ(x) +B(y) coshφ(x),

∫ x

0

sin θ(τ)dτ

)
,

16



where A is a curve in S21 and B is a curve in H2 orthogonal to A such that
the two speeds A′ and B′ are parallel. Denoting by H the unit vector of their
common direction, one has H = A⊗B and moreover

• H is a space-like curve in the first case,

• H is a time-like curve in the second case,

• H is a light-like curve in the last case.

Theorem 3.9. [7] If F : M → H2 × R is an isometric immersion with angle
function θ /∈

{
0, π2

}
, then U is a principal direction if and only if F is locally

given by
F (x, y) = (A(y) sinhφ(x) +B(y) coshφ(x), χ(x)) ,

where A(y) is a curve in S21 and B is a curve in H2, such that 〈A,B〉 = 0, A′ ‖ B′
and where (φ(x), χ(x)) is a regular curve in R2. The angle function θ of M
depends only on x and coincides with the angle function of the curve (φ, χ).
In particular, we can arc length reparametrize (φ, χ); then (x, y) are canonical
cordinates and θ′(x) = κ(x), the curvature of (φ, χ).

Theorem 3.10. [7] Let F : M → H2 × R is an isometric immersion with
θ /∈

{
0, π2

}
. Then M has U as a principal direction if and only if F is given by

F (x, y) = (f(y) coshφ(x) +Nf (y) sinhφ(x), χ(x)) ,

where f(y) is a regular curve in H2 and Nf (y) = f(y)⊗f ′(y)√
〈f ′(y),f ′(y)〉

represents the

normal of f . Moreover, (φ, χ) is a regular curve in R2 and the angle function
θ of this curve is the same as the angle function of the surface parametrized by
F .

Consequently, authors obtained the following classification results by con-
sidering minimal and flat surfaces.

Corollary 3.11. [7] Let M be a surface isometrically immersed in H2×R, with
θ /∈

{
0, π2

}
. Then M is minimal with U a principal direction if and only if the

immersion is, up to isometries of the ambient space, locally given by one of the
next cases

• F (x, y) =

(
b(x)√

1+c21−c22
, sinh y

√
a2(x)+1√
1+c21−c22

, cosh y

√
a2(x)+1√
1+c21−c22

, χ(x)

)
,

• F (x, y) =

(
cos y

√
a2(x)+1√
−1−c21+c22

, sin y

√
a2(x)+1√
−1−c21+c22

, b(x)√
−1−c21+c22

, χ(x)

)
,

• F (x, y) =
(
b(x)y, b(x)2 (1− y2)− 1

2b(x) ,
b(x)
2 (1 + y2) + 1

2b(x) , χ(x)
)

,

where χ(x) =
∫ x
0

1√
a2(τ)+1

dτ, with a(x) = c1 coshx+ c2 sinhx, b(x) = a′(x) and

c1, c2 are constants.
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Theorem 3.12. [7] Let M be a surface in H2 × R, with θ /∈
{

0, π2
}

. Then
M is flat with U a principal direction if and only if the immersion F is, up to
isometries of the ambient space, given by

• F (x, y) =
(

x√
1+c

cos y, x√
1+c

sin y,
√
x2+c+1√

1+c
, χ(x)

)
,

• F (x, y) =
(√

x2+c+1√
−1−c ,

x√
−1−c sinh y, x√

−1−c cosh y, χ(x)
)

,

• F (x, y) =
(
xy, x2 (1− y2)− 1

2x ,
x
2 (1 + y2) + 1

2x , χ(x)
)
,

where χ(x) =
∫ x
0

√
τ2+c√
τ2+c+1

dτ, c ∈ R.

3.3 Surfaces in M2(c)× R1

In [10], Fu and Nistor gave a partial classification of CPD surfaces by assuming
that the fixed vector is time-like. In this case, the fixed vector is k = (0, 0, 1)
which is time-like.

Similar to previous case, let U stand for the unit tangent vector on the
direction of kT .

Theorem 3.13. [10] Let M be a space-like surface in Lorentzian product spaces
M2(c)× R1. Then, U is a principal direction if and only if M is normally flat
in R3

1 for c = 0, R4
1 for c = 1, R4

2 for c = −1.

Next, we would like to mention the following theorem obtained in [10] where
authors assume k = (0, 0, 1).

Theorem 3.14. [10, 20] Let L : M →M2(c)×R1 be a space-like surface. Then,
U is a canonical principal direction for M if and only if M is parametrized as:

• If c = 1, then L : M → S2 × R1,

L(x, y) = (cosφ(x)f(y) + sinφ(x)Nf (y), χ(x)) ,

where f(y) is a regular curve on S2 and

Nf (y) =
f(y)⊗ f ′(y)√
〈f ′(y), f ′(y)〉

represents the normal of f .

• If c = −1, then L : M → H2 × R1,

L(x, y) = (coshφ(x)f(y) + sinhφ(x)Nf (y), χ(x)) ,

where f(y) is a regular curve in S2 and

Nf (y) =
f(y)⊗ f ′(y)√
〈f ′(y), f ′(y)〉

represents the normal of f .
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• If c = 0, then we have L : M → R3
1 is congruent to one of the following

two surfaces.

1. L(x, y) = (cos y, sin y, 0)φ(x)− (0, 0, 1)χ(x) + γ(v), where

γ(v) =

(∫ y

0

ψ(τ) sin(τ)dτ,−
∫ y

0

ψ(τ) cos(τ)dτ, 0

)
, ψ ∈ C∞(M).

2. L(x, y) = (cos y0, sin(y0), 0)φ(x)− (0, 0, 1)χ(x) + γ0(y), where

γ0(y) = (−(sin y0)y, (cos y0)y, 0)

and y0 is a real constant.

In all three cases φ(x) =
∫ x
x0

cosh θ(τ)dτ and χ(x) =
∫ x
x0

sinh θ(τ)dτ .

Now, we give the following results obtained in [10] for Lorentzian surfaces
with canonical principal direction. We note that they gave the partial classifi-
cation of those surfaces in that paper.

Theorem 3.15. [10] Let M be a Lorentzian surface in Lorentzian product
spaces M2(c) × R1, and let θ be the hyperbolic angle function. Then, U is a
principal direction if and only if M is normally flat in R3

1 for c = 0, R4
1 for

c = 1, R4
2 for c = −1.

Theorem 3.16. [10, 7] Let L : M → M2(c)× R1 be a Lorentzian surface and
let θ /∈ 0 be the hyperbolic angle function. Then, U is a canonical principal
direction for M if and only if M is parametrized as:

• If c = 1, then L : M → S2 × R1 is

L(x, y) = (cosχ(x)f(y) + sinχ(x)Nf (y), φ(x)) ,

where f(y) is a regular curve on S2 and

Nf (y) =
f(y)⊗ f ′(y)√
〈f ′(y), f ′(y)〉

represents the normal of f .

• If c = −1, then L : M → H2 × R1 is

L(x, y) = (coshχ(x)f(y) + sinhχ(x)Nf (y), φ(x)) ,

where f(y) is a regular curve in S2 and

Nf (y) =
f(y)⊗ f ′(y)√
〈f ′(y), f ′(y)〉

represents the normal of f .
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• If c = 0, then L : M → R3
1

1. L(x, y) = (χ(x) cos y, χ(x) sin y, φ(x)) + γ(y) where

γ(y) =

(
−
∫ y

0

ψ(τ) sin(τ)dτ,

∫ y

0

ψ(τ) cos(τ)dτ, 0

)
, ψ ∈ C∞(M).

2. L(x, y) = (χ(x) cos y0, χ(x) sin y0, φ(x)) + γ0y, where

γ0 = (− sin y0, cos y0, 0)

and y0 is a real constant.

In all these cases φ(x) =
∫ x
x0

cosh θ(τ)dτ and χ(x) =
∫ x
x0

sinh θ(τ)dτ .

We have the following corollaries of the previvous theorem.

Corollary 3.17. [10] The only flat Lorentz surfaces M immersed in E3
1 en-

dowed with a canonical principal direction are given by the cylindirical surfaces
parametrized in the last case of Theorem 3.16.

Corollary 3.18. [10] The only minimal Lorentz surfaces M immersed in E3
1

endowed with a canonical principal direction are given by the catenoids of the
3rd kind parametrized as:

L(x, y) =

(
m cos

t

m
cos y,m cos

t

m
sin y, x

)
,m ∈ R {0} .

4 Surfaces endowed with canonical

principal direction in Euclidean and
semi-Euclidean spaces

A surface in a semi-Euclidean space E3
r is said to be endowed with canonical prin-

cipal direction (CPD) if there exists a fixed direction k such that S(kT ) = k1k
T ,

where kT denote the tangential component of k. In [19], Munteanu and Nistor
studied surfaces with CPD in E3, while some classifications of such surfaces in
the Minkowski space E3

1 is obtained in [20] for some cases.

4.1 Surfaces in E3

Let M be a surface with CPD in E3. Note that by choosing an appropriate
rotation in E3, we may assume k = (0, 0, 1) and we denote U = kT /‖kT ‖. We
define θ by k = sin θU + cos θN . To eliminate trivial cases we consider a point
p ∈M with θ(p) /∈

{
0, π2

}
.

Note that if U is a principal direction, then we can choose a local coordinate
system (x, y) in a neighborhood of p so that ∂x is in the direction of U and the
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metric g has the form g = dx2 + β2(x, y)dy2. Further, the shape operator S is
given by

S =

(
θx 0

0 βx tan θ
β

)
.

Moreover, θ and β are related by βx

cos θ is independent of x and θy = 0, [19].
In [19] the following characterization theorem obtained.

Theorem 4.1. [19] Let M be a surface in E3 and θ /∈ 0 be the angle function.
Let (x, y) be local coordinates on M such that ∂x is the direction of U . Then,
U is a principal direction if and only if θy = 0.

Further, the classification of surfaces with CPD in E3 was given as following.

Theorem 4.2. [19] Let M be a surface isometrically immersed in E3 and let
θ /∈ 0, π2 be as before. Then, U is a canonical principal direction if and only if
M is given, up to isometries of E3, by one of the following cases:

• r : M → E3,

r(x, y) =

(
φ(x)(cos y, sin y) + γ(y),

∫ x

0

sin θ(τ)dτ

)
with

γ(y) =

(
−
∫ y

0

ψ(τ) sin(τ)dτ,

∫ y

0

ψ(τ) cos(τ)dτ

)
,

where ψ is a smooth function on a certain interval I.

• r : M → E3, r(x, y) =
(
φ(x) cos(y0), φ(x) sin(y0),

∫ y
0

sin θ(τ)dτ + y(v0)
)

with v0 = (− sin(y0), cos(y0), 0), y0 ∈ R. Notice that these surfaces are
cylinders. In both cases φ(x) denotes a primitive of cos θ.

Similar to Sect. 3, the classifications of minimal and flat surfaces follows
from the previous theorem.

Corollary 4.3. [19] Let M be a surface isometrically immersed in E3. Then
M is minimal surface with U a principal direction if and only if the immersion
is, up to isometries of the ambient space, given by

r(x, y) =
(√

x2 + c2 cos y,
√
x2 + c2 sin y, c log(x+

√
x2 + c2)

)
, c ∈ R.

Remark 4.4. [19] We notice that this surface can be obtained by rotating the
catenary around the z-axis. Hence, the only minimal surface in Euclidean 3-
space with canonical principal direction is the catenoid.

Corollary 4.5. [19] Let M be a surface isometrically immersed in E3 and let
θ /∈ 0, π2 be the angle function. Then M is a flat surface with U a principal
direction if and only if the immersion is, up to isometries of the ambient space,
given by

r(x, y) =

(
φ(x) cos(y0), φ(x) sin(y0),

∫ x

0

sin θ(τ)dτ

)
+ yv0

where v0 = (− sin y0, cos y0, 0), y0 ∈ R, and φ(x) represents a primitive of cos θ.

21



4.2 Surfaces in E3
1

On the other hand, some classification results for surfaces endowed with canon-
ical principal direction in E3

1 were obtained in [20], where Nistor studied space-
like surfaces. In that paper, the author gave a classification of those surfaces by
assuming that the fixed direction is time-like and the fixed vector k is considered
to be k = (0, 0, 1).

Theorem 4.6. [20] Let M be a space-like surface in E3
1 and θ /∈ 0 be the

hyperbolic angle function. Let (x, y) be local coordinates on M such that ∂x is
the direction of U . Then, U is a principal direction if and only if θy = 0.

Theorem 4.7. [20] Let M immersed in E3
1 be a space-like surface and θ /∈ 0 be

the hyperbolic angle function. Then, M has a principal direction if and only if
M is parametrized in the last case of Theorem 3.14.

Consequently, we mention following two theorems related with minimality
and flatness.

Theorem 4.8. [20] The only maximal space-like surfaces in E3
1 with a canonical

principal direction are catenoids of the 1st kind, parametrized in local coordinates
(x, y) as

(x, y) 7→
(√

x2 − c2 cos y,
√
x2 − c2 sin y, c ln(x+

√
x2 − c2)

)
, c ∈ R {0} .

Theorem 4.9. [20] The only flat space-like surfaces in E3
1 with a canonical

principal direction are generalized cylinders, parametrized in local coordinates
(x, y) as

(x, y) 7→ σ(x) + v0y,

where σ(x) =
(
cos y0

∫ x
0

cosh θ(τ)dτ, sin y0
∫ x
0

cosh θ(τ)dτ,−
∫ x
0

sinh θ(τ)dτ
)
, v0 =

(− sin y0, cos y0, 0) , y0 ∈ R, and θ /∈ 0 denotes the hyperbolic angle function.

Remark 4.10. [20] The flat space-like surfaces endowed with a canonical prin-
cipal direction classified in Theorem 4.9 are given by the generalized cylinders
from the last case of Theorem 3.14. More precisely, these surfaces are cylinders
over space-like curves with space-like rulings orthogonal to k = (0, 0, 1).

5 New examples of surfaces in E3
1

In this section we would like to present some new examples of Lorentzian surface
endowed with CPD in the Minkowski 3-space. Before we proceed, we would like
to note that if M is space-like, then its shape operator S is diagonalizable,
i.e., there exists a local orthonormal frame field {e1, e2;N} such that Sei =
kiei, i = 1, 2, . . . , n. In this case, the vector field ei and smooth function ki
are called a principal direction and a principal curvature of M .

On the other hand, if M is Lorentzian, then its shape operator can be non-
diagonalizable. In this case, if all of the eigenvalues of S are real at any point
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of M , then the matrix representation of S with respect to a suitable pseudo-
orthonormal frame field {f1, f2;N} such that

〈fi, fj〉 = δij − 1, i, j = 1, 2

of the tangent bundle of M , the shape operator of a Lorentzian surface in E3
1

can be assumed to be one of canonical forms given by

Case 1. S = diag(k1, k2), Case 2. S =

(
k1 µ
0 k1

)
Case 3. S =

(
k1 µ
−µ k1

) (5.1)

for some smooth functions k1, k2 and a non-vanishing function µ, where the
frame field is chosen to be orthonormal in Case 1 and Case 3 and pseudo-
orthonormal in Case 2 (See for example [16]). We note that if the shape operator
of M is as given in Case 3 of (5.1), then S has no eigenvalue. So, we will consider
surfaces whose shape operator is as given in Case 1 or Case 2 of (5.1).

A null curve β(s) in E3
1 is said to have a Cartan frame if there exists vector

fields {A,B,C} on β such that 〈A,A〉 = 〈B,B〉 = 0, 〈A,B〉 = −1, 〈A,C〉 =
〈B,C〉 = 0 and 〈C,C〉 = 1 with β′ = A, A′ = k1(s)C and B′ = k2C for a
constant k2 and a smooth function k1 which is vanishing only on a subset U
with intU = ∅. Then, the surface M given by

f(s, t) = β(s) + tB(s) (5.2)

is said to be a B-scroll. Note that in [16], M. Magid have proved that a surface
in E3

1 with non-diagonalizable shape operator is isoparametric if and only if it
is a B-scroll.

Example 5.1. [14] Consider the B-scroll given by

c(ŝ, t) =

(
ŝ2

2
+ t,

(2ŝ− 1)3/2

3
,
ŝ2

2
− ŝ+ t

)
. (5.3)

It turns out that the shape operator of this surface with respect to the pseudo-
orthonormal frame field {∂t, ∂s} is

S =

(
0 µ
0 0

)
Moreover, it is a surface endowed with a canonical principal direction relative
to k = (1, 0, 0).

Further, we have recently obtained the following result.

Proposition 5.2. A flat minimal surfaces in E3
1 endowed with a canonical

principal direction relative to a fixed direction is either an open part of a plane
or congruent to the surface given in (5.3).
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Remark 5.3. By considering the above example, the problem of considering sur-
faces with shape operator given in Case 2 of (5.1) in terms of having canonical
principal direction arises. Authors would like to announce that they have re-
cently completed the classification of such surfaces with a canonical principal
direction relative to a fixed direction in E3

1.

Example 5.4. [14] Consider the rotational surface with a light-like rotational
axis in E3

1 given by

x(s, t) =

(
1

2
st2 + s+ φ(s), st,

1

2
st2 + φ(s)

)
(5.4)

for a smooth function φ. It is well-kown that the principal directions of M are

e1 =
1√

ε1(−2φ′ − 1)
∂s, e2 =

1

s
∂t.

Further, we have
(1, 0, 1) = ψ(e1 −N)

for a smooth function ψ. Hence, the surface given by (5.4) is endowed with a
canonical principal direction relative to k = (1, 0, 1).

Remark 5.5. A direct computation yields that the surface given by (5.4) is
minimal if and only if

φ′′

(2φ′ + 1)
=

1

s

On the other hand, the surface given by (5.4) is flat if and only if φ is linear.

Remark 5.6. Authors also would like to announce that they have recently com-
pleted the classification of surfaces with a canonical principal direction relative
to a fixed light-like direction in E3

1.

6 Generalized constant ratio surfaces

in E3
1

Generalized constant ratio surfaces in Euclidean spaces are firstly investigated
in [9, 23]. By definition, let M be a surface in the ambient space, x its position
vector and θ denote the angle function between x and the unit normal vector
field N of M . If the tangential part of x is one of its principal directions, then
M is said to be a generalized constant ratio (in short, GCR surfaces). Note
that, we would like to remember two following definition. The time-like cone of
E3
1 is defined as the set of all time-like vectors of E3

1, that is,

T =
{
x ∈ E3

1 : 〈x, x〉 < 0
}
.

The space-like cone of E3
1 is defined as the set of all space-like vectors of E3

1,
that is,

S =
{
x ∈ E3

1 : 〈x, x〉 > 0
}
.
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In this section, we just would like to present classification of GCR surfaces
in Minkowski 3-space obtained in [9, 8, 24]. Note that in [8], authors studied
this surface independently from the paper at [24]. Fistly, we would like to give
results for this surface obtained in [9].

6.1 Lorentzian surfaces in E3
1

Most recently, Lorentzian GCR surfaces in the 3-dimensional Minkowski space
investigated by Fu and Yang in [11].

Theorem 6.1. [11] Let x : M → E3
1 be a surface immersed in the 3-dimensional

Minkowski space E3
1. If the immersion x lies in the space-like cone, then M is a

GCR surface if and only if the immersion x(M) is given by one of the following
eight statements holds:

• x(s, t) = s (cosu(s), sinu(s) cosh t, sinu(s) sinh t), where u(s) =
∫ cot θ(s)

s ds;

• x(s, t) = s (sinu(s), cosu(s) cosh t, cosu(s) sinh t), where u(s) =
∫ cot θ(s)

s ds;

• x(s, t) = s (cosu(s)f(t) + sinu(s)f(t)× f ′(t)), where f is a time-like unit

speed curve on S21 satisfying (f, f ′, f ′′) /∈ 0, u(s) =
∫ cot θ(s)

s ds;

• x(s, t) = s
2

(
−e−u(s) + eu(s)(t2 − 1), 2eu(s)t,−e−u(s) + eu(s)(t2 + 1)

)
, where

u(s) =
∫ coth θ(s)

s ds;

• x(s, t) = s
2

(
−eu(s) + e−u(s)(t2 − 1), 2e−u(s)t,−eu(s) + e−u(s)(t2 + 1)

)
, where

u(s) =
∫ coth θ(s)

s ds;

• x(s, t) = s (coshu(s) cos t, sinhu(s) sin t, sinhu(s)), where

u(s) =

∫
coth θ(s)

s
ds;

• x(s, t) = s (coshu(s), sinhu(s) sinh t, sinhu(s) cosh t), where

u(s) =

∫
coth θ(s)

s
ds;

• x(s, t) = s (coshu(s)f(t) + sinhu(s)f(t)× f ′(t)), where f is a time-like

unit speed curve on S21 satisfying (f, f ′, f ′′) /∈ 0, u(s) =
∫ coth θ(s)

s ds.

Further, if x lies in the time-like cone, the following classification theorem
was obtained.

Theorem 6.2. [11] Let x : M → E3
1 be a surface immersed in the 3-dimensional

Minkowski space. If the immersion x lies in the timelike cone, then M is a GCR
surface if and only if the immersion x(M) is given by one of the following five
statements holds:
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• x(s, t) = s
2

(
e−u(s) + eu(s)(t2 − 1), 2eu(s)t, e−u(s) + eu(s)(t2 + 1)

)
, where

u(s) =

∫
tanh θ(s)

s
ds;

• x(s, t) = s
2

(
eu(s) + e−u(s)(t2 − 1), 2e−u(s)t, eu(s) + e−u(s)(t2 + 1)

)
, where

u(s) =
∫ tanh θ(s)

s ds;

• x(s, t) = s (sinhu(s), coshu(s) sinh t, coshu(s) cosh t), where

u(s) =

∫
tanh θ(s)

s
ds;

• x(s, t) = s (sinhu(s) sin t, sinhu(s) cos t, coshu(s)), where

u(s) =

∫
tanh θ(s)

s
ds;

• x(s, t) = s (coshu(s)f(t) + sinhu(s)f(t)× f ′(t)), where f is a unit speed

curve on H2 satisfying 〈f ′′, f ′′〉 /∈ −〈f, f ′′〉2, u(s) =
∫ tanh θ(s)

s ds.

We would like to also note the following consequences of the previous theo-
rems.

Corollary 6.3. [11] A flat Lorentz GCR surface in E3
1 is an open part of a

plane or of a cylinder.

Corollary 6.4. [11] A Lorentzian GCR surface in E3
1 with constant mean cur-

vature is a surface of revolution.

6.2 Space-like GCR Surfaces in Minkowski 3-Space

In [8] and [24], the authors independently studied the space-like GCR surface
in Minkowski spaces. After, they independently obtained the complete classi-
fication of GCR surfaces in the Minkowski 3-space. All the following results
obtained for space-like GCR surfaces in Minkowski spaces were given in [8, 24].

Theorem 6.5. [8] Let M be a non-degenerated hypersurface in En+1
1 with po-

sition vector x. If M is GCR, then the tangential part of x is either space-like
or time-like.

Proposition 6.6. [8] Let M be an oriented hypersurface in the Minkowski space
En+1
1 and x its position vector. Consider a unit tangent vector field e1 in the

direction of xT . Then, M is a GCR hypersurface if and only if a curve α is a
geodesic of M whenever it is an integral curve of e1.

Proposition 6.7. [8, 24] Let M be a space-like hypersurface in the Minkowski
space En+1

1 and x : M → En+1
1 the position vector with the tangential component

xT . Then M is GCR hypersurface if and only if Y (θ) = 0, whenever 〈Y, xT 〉 = 0,
where θ is the angle function.
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First we assume that the surface is contained in the time-like cone.

Theorem 6.8. [8, 24] Let x : M → E3
1 be a space-like surface immersed in the

3-dimensional Minkowski space. Also, assume that M is lying in the time-like
cone of E3

1. Then, M is GCR if and only if it can be parametrized by

x(s, t) = s (coshu(s)ϕ(t) + sinhu(s)ϕ(t) ∧ ϕ′(t)) , (6.1)

where ϕ = ϕ(t) is an arc-length parametrized curve lying on H2(−1) and u =
u(s) is a smooth function. In this case, x can be decomposed as

x = −s (sinhθe1 + coshθN) (6.2)

for the function θ given by
coth θ = su′ (6.3)

Now, we will give the classification of space-like GCR surfaces in case the
image of the immersion x lies in the space-like cone.

Theorem 6.9. [8, 24] Let x : M → E3
1 be a space-like surface immersed in the

3-dimensional Minkowski space. Also, assume that M is lying in the space-like
cone of E3

1. Then, M is GCR if and only if it can be parametrized by

x(s, t) = s (coshu(s)ϕ(t) + sinhu(s)ϕ(t) ∧ ϕ′(t)) (6.4)

where ϕ = ϕ(t) is an arclength parametrized curve lying on S21(1) and u = u(s)
is a smooth function. In this case, x can be decomposed as

x = s (coshθe1 + sinhθN) (6.5)

for the function θ given by
tanh θ = su′. (6.6)

As a direct corollary of the previous theorems, we have

Corollary 6.10. [8] A space-like rotational surface given by

x(s, t) = (s coshu cosh t, s coshu sinh t, s sinhu) (6.7)

or
x(s, t) = (s coshu sinh t, s coshu cosh t, s sinhu) (6.8)

is a GCR surface, where u = u(s) is a non-vanishing smooth function.

Theorem 6.11. [8, 24] The flat space-like GCR surfaces immersed in E3
1 are

an open parts of a plane or of a cylinder.

Proposition 6.12. [24] The space-like GCR surfaces with constant mean cur-
vature immersed in E3

1 are surfaces of revolution.
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1 Introduction

The study of submanifolds with constant mean curvature, i.e., CMC subman-
ifolds, and, in particular, that of CMC surfaces in 3-dimensional spaces, rep-
resents a very active research topic in Differential Geometry for more than 50
years.

There are several ways to generalize these submanifolds. For example, keep-
ing the CMC hypothesis and adding other geometric hypotheses to the sub-
manifold or, by contrast, in the particular case of hypersurfaces in space forms,
studying the hypersurfaces which are “highly non-CMC”.

The biconservative submanifolds seem to be an interesting generalization of
CMC submanifolds. Biconservative submanifolds in arbitrary manifolds (and in
particular, biconservative surfaces) which are also CMC have some remarkable
properties (see, for example [10, 18, 22, 28]). CMC hypersurfaces in space forms
are trivially biconservative, so more interesting is the study of biconservative
hypersurfaces which are non-CMC; recent results in non-CMC biconservative
hypersurfaces were obtained in [12, 19, 21, 29, 30].

The biconservative submanifolds are closely related to the biharmonic sub-
manifolds. More precisely, let us consider the bienergy functional defined for
all smooth maps between two Riemannian manifolds (Mm, g) and (Nn, h) and
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given by

E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2 vg, ϕ ∈ C∞(M,N),

where τ(ϕ) is the tension field of ϕ. A critical point of E2 is called a biharmonic
map and is characterized by the vanishing of the bitension field τ2(ϕ) (see [15]).

A Riemannian immersion ϕ : Mm → (Nn, h) or, simply, a submanifold M
of N , is called biharmonic if ϕ is a biharmonic map.

Now, if ϕ : M → (N,h) is a fixed map, then E2 can be thought as a functional
defined on the set of all Riemannian metrics on M . This new functional’s
critical points are Riemannian metrics determined by the vanishing of the stress-
bienergy tensor S2. This tensor field satisfies

divS2 = −〈τ2(ϕ), dϕ〉.

If divS2 = 0 for a submanifold M in N , then M is called a biconservative
submanifold and it is characterized by the fact that the tangent part of its
bitension field vanishes. Thus we can expect that the class of biconservative
submanifolds to be much larger than the class of biharmonic submanifolds.

The paper is organized as follows. After a section where we recall some
notions and general results about biconservative submanifolds, we present in
Section 3 the local, intrinsic characterization of biconservative surfaces. The
local, intrinsic characterization theorem provides the necessary and sufficient
conditions for an abstract surface

(
M2, g

)
to admit, locally, a biconservative

embedding with positive mean curvature function f and grad f 6= 0 at any
point.

Our main goal is to extend the local classification results for biconservative
surfaces in N3(c), with c = 0 and c = 1, to global results, i.e., we ask that
biconservative surfaces to be complete, with f > 0 everywhere and | grad f | > 0
on an open dense subset.

In Section 4 we consider the global problem and construct complete bicon-
servative surfaces in R3 with f > 0 on M and grad f 6= 0 at any point of an
open dense subset of M . We determine such surfaces in two ways. One way is
to use the local, extrinsic characterization of biconservative surfaces in R3 and
“glue” two pieces together in order to obtain a complete biconservative surface.
The other way is more analytic and consists in using the local, intrinsic charac-
terization theorem in order to obtain a biconservative immersion from

(
R2, gC0

)
in R3 with f > 0 on R2 and | grad f | > 0 on an open dense subset of R2 (the
immersion has to be unique); here, C0 is a positive constant and therefore we
obtain a one-parameter family of solutions. It is worth mentioning that, by
a simple transformation of the metric gC0 ,

(
R2,

√
−KC0

gC0

)
is (intrinsically)

isometric to a helicoid.
In the last section we consider the global problem of biconservative surfaces

in S3 with f > 0 on M and grad f 6= 0 at any point of an open dense subset
of M . As in the R3 case, we use the local, extrinsic classification of biconser-
vative surfaces in S3, but now the “gluing” process is not as clear as in R3.
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Further, we change the point of view and use the local, intrinsic characteriza-
tion of biconservative surfaces in S3. We determine the complete Riemannian
surfaces

(
R2, gC1,C∗1

)
which admit a biconservative immersion in S3 with f > 0

everywhere and | grad f | > 0 on an open dense subset of R2 and we show that,
up to isometries, there exists only a one-parameter family of such Riemannian
surfaces indexed by C1.

We end the paper with some figures, obtained for particular choices of the
constants, which represent the non-CMC complete biconservative surfaces in
R3 and the way how these surfaces can be obtained in S3.

2 Biconservative submanifolds;

general properties

Throughout this work, all manifolds, metrics, maps are assumed to be smooth,
i.e. in the C∞ category, and we will often indicate the various Riemannian
metrics by the same symbol 〈, 〉. All surfaces are assumed to be connected and
oriented.

A harmonic map ϕ : (Mm, g)→ (Nn, h) between two Riemannian manifolds
is a critical point of the energy functional

E : C∞(M,N)→ R, E(ϕ) =
1

2

∫
M

|dϕ|2 vg,

and it is characterized by the vanishing of its tension field

τ(ϕ) = traceg∇dϕ.

The idea of the stress-energy tensor associated to a functional comes from
D. Hilbert ([14]). Given a functional E, one can associate to it a symmetric
2-covariant tensor field S such that divS = 0 at the critical points of E. When
E is the energy functional, P. Baird and J. Eells ([1]), and A. Sanini ([27]),
defined the tensor field

S = e(ϕ)g − ϕ∗h =
1

2
|dϕ|2g − ϕ∗h,

and proved that
divS = −〈τ(ϕ), dϕ〉.

Thus, S can be chosen as the stress-energy tensor of the energy functional. It is
worth mentioning that S has a variational meaning. Indeed, we can fix a map
ϕ : Mm → (Nn, h) and think E as being defined on the set of all Riemannian
metrics on M . The critical points of this new functional are Riemannian metrics
determined by the vanishing of their stress-energy tensor S.

More precisely, we assume that M is compact and denote

G = {g : g is a Riemannian metric on M} .
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For a deformation {gt} of g we consider ω = d
dt

∣∣
t=0

gt ∈ TgG = C
(
�2T ∗M

)
.

We define the new functional

F : G → R, F(g) = E(ϕ)

and we have the following result.

Theorem 2.1 ([1, 27]). Let ϕ : Mm → (Nn, h) and assume that M is compact.
Then

d

dt

∣∣∣∣
t=0

F (gt) =
1

2

∫
M

〈ω, e(ϕ)g − ϕ∗h〉 vg.

Therefore g is a critical point of F if and only if its stress-energy tensor S
vanishes.

We mention here that, if ϕ : (Mm, g) → (Nn, h) is an arbitrary isometric
immersion, then divS = 0.

A natural generalization of harmonic maps is given by biharmonic maps. A
biharmonic map ϕ : (Mm, g) → (Nn, h) between two Riemannian manifolds is
a critical point of the bienergy functional

E2 : C∞(M,N)→ R, E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2 vg,

and it is characterized by the vanishing of its bitension field

τ2(ϕ) = −∆ϕτ(ϕ)− traceg R
N (dϕ, τ(ϕ))dϕ,

where
∆ϕ = − traceg (∇ϕ∇ϕ −∇ϕ∇)

is the rough Laplacian of ϕ−1TN and the curvature tensor field is

RN (X,Y )Z = ∇NX∇NY Z −∇NY ∇NXZ −∇N[X,Y ]Z, ∀X,Y, Z ∈ C(TM).

We remark that the biharmonic equation τ2(ϕ) = 0 is a fourth-order non-
linear elliptic equation and that any harmonic map is biharmonic. A non-
harmonic biharmonic map is called proper biharmonic.

In [16], G. Y. Jiang defined the stress-energy tensor S2 of the bienergy (also
called stress-bienergy tensor) by

S2(X,Y ) =
1

2
|τ(ϕ)|2〈X,Y 〉+ 〈dϕ,∇τ(ϕ)〉〈X,Y 〉

− 〈dϕ(X),∇Y τ(ϕ)〉 − 〈dϕ(Y ),∇Xτ(ϕ)〉,

as it satisfies
divS2 = −〈τ2(ϕ), dϕ〉.

The tensor field S2 has a variational meaning, as in the harmonic case. We
fix a map ϕ : Mm → (Nn, h) and define a new functional

F2 : G → R, F2(g) = E2(ϕ).

Then we have the following result.
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Theorem 2.2 ([17]). Let ϕ : Mm → (Nn, h) and assume that M is compact.
Then

d

dt

∣∣∣∣
t=0

F2 (gt) = −1

2

∫
M

〈ω, S2〉 vg,

so g is a critical point of F2 if and only if S2 = 0.

We mention that, if ϕ : (Mm, g) → (Nn, h) is an isometric immersion then
divS2 does not necessarily vanish.

A submanifold of a given Riemannian manifold (Nn, h) is a pair (Mm, ϕ),
where Mm is a manifold and ϕ : M → N is an immersion. We always consider
on M the induced metric g = ϕ∗h, thus ϕ : (M, g) → (N,h) is an isometric
immersion; for simplicity we will write ϕ : M → N without mentioning the
metrics. Also, we will write ϕ : M → N , or even M , instead of (M,ϕ).

A submanifold ϕ : Mm → Nn is called biharmonic if the isometric immersion
ϕ is a biharmonic map from (Mm, g) to (Nn, h).

Even if the notion of biharmonicity may be more appropriate for maps than
for submanifolds, as the domain and the codomain metrics are fixed and the
variation is made only through the maps, the biharmonic submanifolds proved
to be an interesting notion (see, for example, [24]).

In order to fix the notations, we recall here only the fundamental equations
of first order of a submanifold in a Riemannian manifold. These equations
define the second fundamental form, the shape operator and the connection in
the normal bundle. Let ϕ : Mm → Nn be an isometric immersion. For each
p ∈M , Tϕ(p)N splits as an orthogonal direct sum

Tϕ(p)N = dϕ(TpM)⊕ dϕ(TpM)⊥, (2.1)

and NM =
⋃
p∈M

dϕ(TpM)⊥ is referred to as the normal bundle of ϕ, or of M ,

in N .
Denote by ∇ and ∇N the Levi-Civita connections on M and N , respectively,

and by ∇ϕ the induced connection in the pull-back bundle

ϕ−1(TN) =
⋃
p∈M

Tϕ(p)N.

Taking into account the decomposition in (2.1), one has

∇ϕXdϕ(Y ) = dϕ(∇XY ) +B(X,Y ), ∀X,Y ∈ C(TM),

where B ∈ C(�2T ∗M ⊗ NM) is called the second fundamental form of M in
N . Here T ∗M denotes the cotangent bundle of M . The mean curvature vector
field of M in N is defined by H = (traceB)/m ∈ C(NM), where the trace is
considered with respect to the metric g.

Furthermore, if η ∈ C(NM), then

∇ϕXη = −dϕ(Aη(X)) +∇⊥Xη, ∀X ∈ C(TM),
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where Aη ∈ C(T ∗M ⊗TM) is called the shape operator of M in N in the direc-
tion of η, and ∇⊥ is the induced connection in the normal bundle. Moreover,
〈B(X,Y ), η〉 = 〈Aη(X), Y 〉, for all X,Y ∈ C(TM), η ∈ C(NM). In the case
of hypersurfaces, we denote f = traceA, where A = Aη and η is the unit nor-
mal vector field, and we have H = (f/m)η; f is the (m times) mean curvature
function.

A submanifold M of N is called PMC if H is parallel in the normal bundle,
and CMC if |H| is constant.

When confusion is unlikely we identify, locally, M with its image through ϕ,
X with dϕ(X) and ∇ϕXdϕ(Y ) with ∇NXY . With these identifications in mind,
we write

∇NXY = ∇XY +B(X,Y ),

and
∇NXη = −Aη(X) +∇⊥Xη.

If divS2 = 0 for a submanifold M in N , then M is called biconservative.
Thus, M is biconservative if and only if the tangent part of its bitension field
vanishes.

We have the following characterization theorem of biharmonic submanifolds,
obtained by splitting the bitension field in the tangent and normal part.

Theorem 2.3. A submanifold Mm of a Riemannian manifold Nn is biharmonic
if and only if

traceA∇⊥· H(·) + trace∇AH + trace
(
RN (·, H)·

)T
= 0

and
∆⊥H + traceB (·, AH(·)) + trace

(
RN (·, H)·

)⊥
= 0,

where ∆⊥ is the Laplacian in the normal bundle.

Various forms of the above result were obtained in [7, 17, 23]. From here we
deduce some characterization formulas for the biconservativity.

Corollary 2.4. Let Mm be a submanifold of a Riemannian manifold Nn. Then
M is a biconservative submanifold if and only if:

1. traceA∇⊥· H(·) + trace∇AH + trace
(
RN (·, H)·

)T
= 0;

2. m
2 grad

(
|H|2

)
+ 2 traceA∇⊥· H(·) + 2 trace

(
RN (·, H)·

)T
= 0;

3. 2 trace∇AH − m
2 grad

(
|H|2

)
= 0.

The following properties are immediate.

Proposition 2.5. Let Mm be a submanifold of a Riemannian manifold Nn. If
∇AH = 0 then M is biconservative.
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Proposition 2.6. Let Mm be a submanifold of a Riemannian manifold Nn.
Assume that N is a space form, i.e., it has constant sectional curvature, and M
is PMC. Then M is biconservative.

Proposition 2.7 ([2]). Let Mm be a submanifold of a Riemannian manifold
Nn. Assume that M is pseudo-umbilical, i.e., AH = |H|2I, and m 6= 4. Then
M is CMC.

If we consider the particular case of hypersurfaces, then Theorem 2.3 be-
comes

Theorem 2.8 ([2, 25]). If Mm is a hypersurface in a Riemannian manifold
Nm+1, then M is biharmonic if and only if

2A(grad f) + f grad f − 2f
(
RicciN (η)

)T
= 0,

and
∆f + f |A|2 − f RicciN (η, η) = 0,

where η is the unit normal vector field of M in N .

Corollary 2.9. A hypersurface Mm in a space form Nm+1(c) is biconservative
if and only if

A(grad f) = −f
2

grad f.

Corollary 2.10. Any CMC hypersurface in Nm+1(c) is biconservative.

Therefore, the biconservative hypersurfaces may be seen as the next research
topic after that of CMC surfaces.

3 Intrinsic characterization of

biconservative surfaces

We are interested to study biconservative surfaces which are non-CMC. We
will first look at them from a local, extrinsic point of view and then from a
global point of view. While by “local” we will mean the biconservative surfaces
ϕ : M2 → N3(c) with f > 0 and grad f 6= 0 at any point of M , by “global” we
will mean the complete biconservative surfaces ϕ : M2 → N3(c) with f > 0 at
any point of M and grad f 6= 0 at any point of an open and dense subset of M .

In this section, we consider the local problem, i.e., we take ϕ : M2 → N3(c) a
biconservative surface and assume that f > 0 and grad f 6= 0 at any point of M .
Let X1 = (grad f)/| grad f | and X2 two vector fields such that {X1(p), X2(p)}
is a positively oriented orthonormal basis at any point p ∈ M . In particular,
we obtain that M is parallelizable. If we denote by λ1 ≤ λ2 the eigenvalues
functions of the shape operator A, since A (X1) = −(f/2)X1 and traceA = f ,
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we get λ1 = −f/2 and λ2 = 3f/2. Thus the matrix of A with respect to the
(global) orthonormal frame field {X1, X2} is

A =

 − f2 0

0 3f
2

 .

We denote by K the Gaussian curvature and, from the Gauss equation, K =
c+ detA, we obtain

f2 =
4

3
(c−K). (3.1)

Thus c−K > 0 on M .
From the definitions of X1 and X2, we find that

grad f = (X1f)X1 and X2f = 0.

Using the connection 1-forms, the Codazzi equation and then the extrinsic and
intrinsic expression for the Gaussian curvature, we obtain the next result which
shows that the mean curvature function of a non-CMC biconservative surface
must satisfy a second-order partial differential equation. More precisely, we have
the following theorem.

Theorem 3.1 ([5]). Let ϕ : M2 → N3(c) a biconservative surface with f > 0
and grad f 6= 0 at any point of M . Then we have

f∆f + | grad f |2 +
4

3
cf2 − f4 = 0, (3.2)

where ∆ is the Laplace-Beltrami operator on M .

In fact, we can see that around any point of M there exists (U ;u, v) local
coordinates such that f = f(u, v) = f(u) and (3.2) is equivalent to

ff ′′ − 7

4
(f ′)

2 − 4

3
cf2 + f4 = 0, (3.3)

i.e., f must satisfy a second-order ordinary differential equation.
Indeed, let p0 ∈M be an arbitrary fixed point of M and let γ = γ(u) be an

integral curve of X1 with γ(0) = p0. Let φ the flow of X2 and (U ;u, v) local
coordinates with p0 ∈ U such that

X(u, v) = φγ(u)(v) = φ(γ(u), v).

We have
Xu(u, 0) = γ′(u) = X1(γ(u)) = X1(u, 0)

and
Xv(u, v) = φ′γ(u)(v) = X2

(
φγ(u)(v)

)
= X2(u, v).

If we write the Riemannian metric g on M in local coordinates as

g = g11du
2 + 2g12dudv + g22dv

2,

37



we get g22 = |Xv|2 = |X2|2 = 1, and X1 can be expressed with respect to Xu

and Xv as

X1 =
1

σ
(Xu − g12Xv) = σ gradu,

where σ =
√
g11 − g212 > 0, σ = σ(u, v).

Let f ◦X = f(u, v). Since X2f = 0, we find that

f(u, v) = f(u, 0) = f(u), ∀(u, v) ∈ U.

It can be proved that

[X1, X2] =
3 (X1f)

4f
X2,

and thus X2X1f = X1X2f − [X1, X2] f = 0.
On the other hand we have

X2X1f = Xv

(
1
σf
′) = Xv

(
1
σ

)
f ′

= 0
. (3.4)

We recall that

grad f = (X1f)X1 =

(
1

σ
f ′
)
X1 6= 0

at any point of U , and then f ′ 6= 0 at any point of U . Therefore, from (3.4),
Xv (1/σ) = 0, i.e., σ = σ(u). Since g11(u, 0) = 1, and g12(u, 0) = 0, we have
σ = 1, i.e.,

X1 = Xu − g12Xv = gradu. (3.5)

In [5] it was found an equivalent expression for (3.2), i.e.,

(X1X1f) f =
7

4
(X1f)

2
+

4c

3
f2 − f4.

Therefore, using (3.5), relation (3.2) is equivalent to (3.3).

Remark 3.2. If ϕ : M2 → N3(c) is a non-CMC biharmonic surface, then,
there exists an open subset U such that f > 0, grad f 6= 0 at any point of U ,
and f satisfies the following system

∆f = f
(
2c− |A|2

)
A(grad f) = − f2 grad f

.

As we have seen, this system implies ∆f = f
(
2c− |A|2

)
f∆f + | grad f |2 + 4

3cf
2 − f4 = 0

.
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which, in fact, is a ODE system. We get ff ′′ − 3
4 (f ′)

2
+ 2cf2 − 5

2f
4 = 0

ff ′′ − 7
4 (f ′)

2 − 4
3cf

2 + f4 = 0

. (3.6)

As an immediate consequence we obtain

(f ′)
2

+
10

3
cf2 − 7

2
f4 = 0,

and combining it with the first integral

(f ′)
2

= 2f4 − 8cf2 + αf3/2

of the first equation from (3.6), where α ∈ R is a constant, we obtain

3

2
f5/2 +

14

3
cf1/2 − α = 0.

If we denote f̃ = f1/2, we get 3f̃5/2 + 14cf̃/3 − α = 0. Thus, f̃ satisfies a
polynomial equation with constant coefficients, so f̃ has to be a constant and
then, f is a constant, i.e., grad f = 0 on U (in fact, f has to be zero). Therefore,
we have a contradiction (see [6, 8] for c = 0 and [3, 4], for c = ±1).

We can also note that relation (3.2), which is an extrinsic relation, together
with (3.1), allows us to find an intrinsic relation that (M, g) must satisfy. More
precisely, the Gaussian curvature of M has to satisfy

(c−K)∆K − | gradK|2 − 8

3
K(c−K)2 = 0, (3.7)

and the conditions c−K > 0 and gradK 6= 0.
Formula (3.7) is very similar to the Ricci condition. Further, we will briefly

recall the Ricci problem. Given an abstract surface
(
M2, g

)
, we want to find the

conditions that have to be satisfied by M such that, locally, it admits a minimal
embedding in N3(c). It was proved (see [20, 26]) that if

(
M2, g

)
is an abstract

surface such that c−K > 0 at any point of M , where c ∈ R is a constant, then,
locally, it admits a minimal embedding in N3(c) if and only if

(c−K)∆K − | gradK|2 − 4K(c−K)2 = 0. (3.8)

Condition (3.8) is called the Ricci condition with respect to c, or simply the
Ricci condition. If (3.8) holds, then, locally, M admits a one-parameter family
of minimal embeddings in N3(c).

We can see that relations (3.7) and (3.8) are very similar and, in [9], the
authors studied the link between them. Thus, for c = 0, it was proved that if
we consider a surface

(
M2, g

)
which satisfies (3.7) and K < 0, then there exists

a very simple conformal transformation of the metric g such that
(
M2,
√
−Kg

)
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satisfies (3.8). A similar result was also proved for c 6= 0, but in this case, the
conformal factor has a complicated expression (and it is not enough to impose
that

(
M2, g

)
satisfy (3.7), but we need the stronger hypothesis of it to admit a

non-CMC biconservative immersion in N3(c)).
Unfortunately, condition (3.7) does not imply, locally, the existence of a bi-

conservative immersion in N3(c), as in the minimal case. We need a stronger
condition. It was obtained the following local, intrinsic characterization theo-
rem.

Theorem 3.3 ([9]). Let
(
M2, g

)
be an abstract surface and c ∈ R a constant.

Then, locally, M can be isometrically embedded in a space form N3(c) as a
biconservative surface with positive mean curvature having the gradient different
from zero at any point if and only if the Gaussian curvature K satisfies c −
K(p) > 0, (gradK)(p) 6= 0, for any point p ∈M , and its level curves are circles
in M with constant curvature

κ =
3| gradK|
8(c−K)

.

Remark 3.4. If the surface M in Theorem 3.3 is simply connected, then the
theorem holds globally, but, in this case, instead of a local isometric embedding
we have a global isometric immersion.

We remark that unlike in the minimal immersions case, if M satisfies the hy-
potheses from Theorem 3.3, then there exists a unique biconservative immersion
in N3(c) (up to an isometry of N3(c)), and not a one-parameter family.

The characterization theorem can be equivalently rewritten as below.

Theorem 3.5. Let
(
M2, g

)
be an abstract surface with Gaussian curvature K

satisfying c −K(p) > 0 and (gradK)(p) 6= 0 at any point p ∈ M , where c ∈ R
is a constant. Let X1 = (gradK)/| gradK| and X2 ∈ C(TM) be two vector
fields on M such that {X1(p), X2(p)} is a positively oriented basis at any point
of p ∈M . Then, the following conditions are equivalent:

(a) the level curves of K are circles in M with constant curvature

κ =
3| gradK|
8(c−K)

=
3X1K

8(c−K)
;

(b)

X2 (X1K) = 0 and ∇X2X2 =
−3X1K

8(c−K)
X1;

(c) locally, the metric g can be written as g = (c−K)−3/4
(
du2 + dv2

)
, where

(u, v) are local coordinates positively oriented, K = K(u), and K ′ > 0;

(d) locally, the metric g can be written as g = e2ϕ
(
du2 + dv2

)
, where (u, v) are

local coordinates positively oriented, and ϕ = ϕ(u) satisfies the equation

ϕ′′ = e−2ϕ/3 − ce2ϕ (3.9)
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and the condition ϕ′ > 0; moreover, the solutions of the above equation,
u = u(ϕ), are

u =

∫
ϕ

ϕ0

dτ√
−3e−2τ/3 − ce2τ + a

+ u0,

where ϕ is in some open interval I and a, u0 ∈ R are constants;

(e) locally, the metric g can be written as g = e2ϕ
(
du2 + dv2

)
, where (u, v) are

local coordinates positively oriented, and ϕ = ϕ(u) satisfies the equation

3ϕ′′′ + 2ϕ′ϕ′′ + 8ce2ϕϕ′ = 0 (3.10)

and the conditions ϕ′ > 0 and c+ e−2ϕϕ′′ > 0; moreover, the solutions of
the above equation, u = u(ϕ), are

u =

∫
ϕ

ϕ0

dτ√
−3be−2τ/3 − ce2τ + a

+ u0,

where ϕ is in some open interval I and a, b, u0 ∈ R are constants, b > 0.

The proof follows by direct computations and by using Remark 4.3 in [9]
and Proposition 3.4 in [21].

Remark 3.6. From the above theorem we have the following remarks.

(i) If condition (a) is satisfied, i.e., the integral curves of X2 are circles in
M with a precise constant curvature, then the integral curves of X1 are
geodesics of M .

(ii) If condition (c) is satisfied, then K has to be a solution of the equation

3K ′′(c−K) + 3 (K ′)
2

+ 8K(c−K)5/4 = 0.

(iii) If condition (c) is satisfied and c > 0, then
(
M2, (c−K)3/4g

)
is a flat

surface and, trivially, a Ricci surface with respect to c.

(iv) Let ϕ = ϕ(u) be a solution of equation (3.10). We consider the change of
coordinates

(u, v) = (αũ+ β, αṽ + β) ,

where α ∈ R is a positive constant and β ∈ R, and define

φ = ϕ (αũ+ β) + logα.

Then g = e2φ
(
dũ2 + dṽ2

)
and φ also satisfies equation (3.10). If ϕ = ϕ(u)

satisfies the first integral

ϕ′′ = be−2ϕ/3 − ce2ϕ,
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where b > 0, then, for α = b−3/8, φ = φ (ũ) satisfies

φ′′ = e−2φ/3 − ce2φ.

From here, as the classification is done up to isometries, we note that
the parameter b in the solution of (3.10) is not essential and only the
parameter a counts. Thus we have a one-parameter family of solutions.

(v) If ϕ is a solution of (3.10), for some c, then ϕ + α, where α is a real
constant, is a solution of (3.10) for ce2α.

(vi) If c = 0, we note that if ϕ is a solution of (3.10), then also ϕ + constant
is a solution of the same equation, i.e, condition (a) from Theorem 3.5 is
invariant under the homothetic tranformations of the metric g. Then, we
see that equation (3.10) is invariant under the affine change of parameter
u = αũ+ β, where α > 0. Therefore, we must solve equation (3.10) up to
this change of parameter and an additive constant of the solution ϕ. The
additive constant will be the parameter that counts.

In the c = 0 case, the solutions of equation (3.10), are explicitly determined
in the next proposition.

Proposition 3.7 ([21]). The solutions of the equation

3ϕ′′′ + 2ϕ′ϕ′′ = 0

which satisfy the conditions ϕ′ > 0 and ϕ′′ > 0, up to affine transformations of
the parameter with α > 0, are given by

ϕ(u) = 3 log(coshu) + constant, u > 0.

We note that, when c = 0, we have a one-parameter family of solutions of
equation (3.10), i.e., gC0 = C0(coshu)6

(
du2 + dv2

)
, C0 being a positive con-

stant.
If c 6= 0, then we can not determine explicitly ϕ = ϕ(u). Another way to

see that in the c 6= 0 case we have only a one-parameter family of solutions of
equation (3.10) is to rewrite the metric g in certain non-isothermal coordinates.

Further, we will consider only the c = 1 case and we have the next result.

Proposition 3.8 ([21]). Let
(
M2, g

)
be an abstract surface with g = e2ϕ(u)(du2+

dv2), where u = u(ϕ) satisfies

u =

∫
ϕ

ϕ0

dτ√
−3be−2τ/3 − e2τ + a

+ u0,

where ϕ is in some open interval I, a, b ∈ R are positive constants, and u0 ∈ R
is a constant. Then

(
M2, g

)
is isometric to(

DC1
, gC1

=
3

ξ2
(
−ξ8/3 + 3C1ξ2 − 3

)dξ2 +
1

ξ2
dθ2

)
,
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where DC1 = (ξ01, ξ02)×R, C1 ∈
(
4/
(
33/2

)
,∞
)

is a positive constant, and ξ01
and ξ02 are the positive vanishing points of −ξ8/3+3C1ξ

2−3, with 0 < ξ01 < ξ02.

Remark 3.9. Let us consider(
DC1

, gC1
=

3

ξ2
(
−ξ8/3 + 3C1ξ2 − 3

)dξ2 +
1

ξ2
dθ2

)

and DC′1
, gC′1 =

3

ξ̃2
(
−ξ̃8/3 + 3C ′1ξ̃

2 − 3
)dξ̃2 +

1

ξ̃2
dθ̃2

 .

The surfaces (DC1
, gC1

) and
(
DC′1

, gC′1
)

are isometric if and only if C1 = C ′1
and the isometry is Θ(ξ, θ) = (ξ,±θ + constant). Therefore, we have a one-
parameter family of surfaces.

Remark 3.10. We note that the expression of the Gaussian curvature of
(DC1

, gC1
) does not depend on C1. More precisely,

KC1(ξ, θ) = −1

9
ξ8/3 + 1.

But, if we change further the coordinates (ξ, θ) =
(
ξ01 + ξ̃ (ξ02 − ξ01) , θ̃

)
, then

we “fix” the domain, i.e., (DC1
, gC1

) is isometric to ((0, 1), g̃C1
) and C1 appears

in the expression of KC1

(
ξ̃, θ̃
)

.

4 Complete biconservative surfaces in

R3

In this section we consider the global problem and construct complete biconser-
vative surfaces in R3 with f > 0 everywhere and grad f 6= 0 at any point of an
open dense subset. Or, from intrinsic point of view, we construct a complete
abstract surface

(
M2, g

)
with K < 0 everywhere and gradK 6= 0 at any point

of an open dense subset of M , that admits a biconservative immersion in R3,
defined on the whole M , with f > 0 on M and | grad f | > 0 on the open dense
subset.

First, we recall a local extrinsic result which provides a characterization of
biconservative surfaces in R3.

Theorem 4.1 ([13]). Let M2 be a surface in R3 with f(p) > 0 and (grad f)(p) 6=
0 for any p ∈ M . Then, M is biconservative if and only if, locally, it is a
surface of revolution, and the curvature κ = κ(u) of the profile curve σ = σ(u),
|σ′(u)| = 1, is a positive solution of the following ODE

κ′′κ =
7

4
(κ′)

2 − 4κ4.
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In [5] there was found the local explicit parametric equation of a biconser-
vative surface in R3.

Theorem 4.2 ([5]). Let M2 be a biconservative surface in R3 with f(p) > 0 and
(grad f)(p) 6= 0 for any p ∈ M . Then, locally, the surface can be parametrized
by

XC̃0
(ρ, v) =

(
ρ cos v, ρ sin v, uC̃0

(ρ)
)
,

where

uC̃0
(ρ) =

3

2C̃0

(
ρ1/3

√
C̃0ρ2/3 − 1 +

1√
C̃0

log

(√
C̃0ρ

1/3 +

√
C̃0ρ2/3 − 1

))

with C̃0 a positive constant and ρ ∈
(
C̃
−3/2
0 ,∞

)
.

We denote by SC̃0
the image XC̃0

((
C̃
−3/2
0 ,∞

)
× R

)
. We note that any two

such surfaces are not locally isometric, so we have a one-parameter family of
biconservative surfaces in R3. These surfaces are not complete.

Remark 4.3. If ϕ : M2 → R3 is a biconservative surface with f > 0 and
grad f 6= 0 at any point, then there exists a unique C̃0 such that ϕ(M) ⊂ SC̃0

.
Indeed, any point admits an open neighborhood which is an open subset of
some SC̃0

. Let us consider p0 ∈ M . Then, there exists a unique C̃0 such that
ϕ(U) ⊂ SC̃0

, where U is an open neighborhood of p0. If A denotes the set of all
points of M such that they admit open neighborhoods which are open subsets
of that SC̃0

, then the set A is non-empty, open and closed in M . Thus, as M is
connected, it follows that A = M .

The “boundary” of SC̃0
, i.e., SC̃0

\ SC̃0
, is the circle(

C̃
−3/2
0 cos v, C̃

−3/2
0 sin v, 0

)
,

which lies in the Oxy plane. At a boundary point, the tangent plane to the
closure SC̃0

of SC̃0
is parallel to Oz. Moreover, along the boundary, the mean

curvature function is constant fC̃0
=
(

2C̃
3/2
0

)
/3 and grad fC̃0

= 0.

Thus, in order to obtain a complete biconservative surface in R3, we can
expect to “glue” along the boundary two biconservative surfaces of type SC̃0

corresponding to the same C̃0 (the two constants have to be the same) and
symmetric to each other, at the level of C∞ smoothness.

In fact, it was proved that we can glue two biconservative surfaces SC̃0
and

SC̃′0
, at the level of C∞ smoothness, only along the boundary and, in this case,

C̃0 = C̃ ′0.

Proposition 4.4 ([19, 21]). If we consider the symmetry of Graf uC , with re-
spect to the Oρ(= Ox) axis, we get a smooth, complete, biconservative surface
S̃C̃0

in R3. Moreover, its mean curvature function f̃C̃0
is positive and grad f̃C̃0

is different from zero at any point of an open dense subset of S̃C̃0
.
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Remark 4.5. The profile curve σC̃0
=
(
ρ, 0, uC̃0

(ρ)
)
≡
(
ρ, uC̃0

(ρ)
)

can be re-
parametrized as

σC̃0
(θ) =

(
σ1
C̃0

(θ), σ2
C̃0

(θ)
)

= C̃
−3/2
0

(
(θ + 1)3/2, 32

(√
θ2 + θ + log

(√
θ +
√
θ + 1

)))
, θ > 0,

(4.1)
and now XC̃0

= XC̃0
(θ, v).

Proposition 4.6. The homothety of R3, (x, y, z)→ C̃0(x, y, z), renders S̃1 onto
S̃
C̃
−2/3
0

.

In [21], there were also found the complete biconservative surfaces in R3 with
f > 0 at any point and grad f 6= 0 at any point of an open dense subset, but
there, the idea was to use the intrinsic characterization of the biconservative
surfaces. More precisely, we have the next global result.

Theorem 4.7 ([21]). Let
(
R2, gC0

= C0 (coshu)
6 (
du2 + dv2

))
be a surface,

where C0 ∈ R is a positive constant. Then we have:

(a) the metric on R2 is complete;

(b) the Gaussian curvature is given by

KC0
(u, v) = KC0

(u) = − 3

C0 (coshu)
8 < 0, K ′C0

(u) =
24 sinhu

C0 (coshu)
9 ,

and therefore gradKC0 6= 0 at any point of R2 \Ov;

(c) the immersion ϕC0 :
(
R2, gC0

)
→ R3 given by

ϕC0
(u, v) =

(
σ1
C0

(u) cos(3v), σ1
C0

(u) sin(3v), σ2
C0

(u)
)

is biconservative in R3, where

σ1
C0

(u) =

√
C0

3
(coshu)

3
, σ2

C0
(u) =

√
C0

2

(
1

2
sinh(2u) + u

)
, u ∈ R.

Sketch of the proof. The first two items follow by standard arguments. For the
last part, we note that choosing C̃0 = (9/C0)1/3 in (4.1) and using the change
of coordinates (θ, v) =

(
(sinhu)2, 3v

)
, where u > 0, the metric induced by

X(9/C0)1/3 coincides with gC0 . Then, we define ϕC0 as: for u > 0, ϕC0(u, v) is
obtained by rotating the profile curve

σ+(
9

C0

)1/3(u) = σ(
9

C0

)1/3(u) =

(
σ1(

9
C0

)1/3(u), σ2(
9

C0

)1/3(u)

)
,

45



and for u < 0, ϕC0(u, v) is obtained by rotating the profile curve

σ−(
9

C0

)1/3(u) =

(
σ1(

9
C0

)1/3(−u),−σ2(
9

C0

)1/3(−u)

)
.

By simple transformations of the metric,
(
R2, gC0

)
becomes a Ricci surface

or a surface with constant Gaussian curvature.

Theorem 4.8. Consider the surface
(
R2, gC0

)
. Then

(
R2,

√
−KC0

gC0

)
is com-

plete, satisfies the Ricci condition and can be minimally immersed in R3 as a
helicoid or a catenoid.

Proposition 4.9. Consider the surface
(
R2, gC0

)
. Then

(
R2,−KC0gC0

)
has

constant Gaussian curvature 1/3 and it is not complete. Moreover,
(
R2,−KC0

gC0

)
is the universal cover of the surface of revolution in R3 given by

Z(u, v) =

(
α(u) cosh

(√
3

a
v

)
, α(u) sinh

(√
3

a
v

)
, β(u)

)
, (u, v) ∈ R2,

where a ∈ (0,
√

3] and

α(u) =
a

coshu
, β(u) =

∫
u

0

√
(3− a2) cosh2 τ + a2

cosh2 τ
dτ .

Remark 4.10. When a =
√

3, the immersion Z has only umbilical points and
the image Z

(
R2
)

is the round sphere of radius
√

3, without the North and the

South poles. Moreover, if a ∈ (0,
√

3), then Z has no umbilical points.

Concerning the biharmonic surfaces in R3 we have the following non-existence
result.

Theorem 4.11 ([6, 8]). There exists no proper biharmonic surface in R3.

5 Complete biconservative surfaces in
S3

As in the previous section, we consider the global problem for biconservative
surfaces in S3, i.e., our aim is to construct complete biconservative surfaces in
S3 with f > 0 everywhere and grad f 6= 0 at any point of an open and dense
subset.

We start with the following local, extrinsic result.
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Theorem 5.1 ([5]). Let M2 be a biconservative surface in S3 with f(p) > 0
and (grad f)(p) 6= 0 at any point p ∈ M . Then, locally, the surface, viewed in
R4, can be parametrized by

YC̃1
(u, v) = σ(u) +

4κ(u)−3/4

3
√
C̃1

(
f1(cos v − 1) + f2 sin v

)
,

where C̃1 ∈
(
64/

(
35/4

)
,∞
)

is a positive constant; f1, f2 ∈ R4 are two constant
orthonormal vectors; σ(u) is a curve parametrized by arclength that satisfies

〈σ(u), f1〉 =
4κ(u)−3/4

3
√
C̃1

, 〈σ(u), f2〉 = 0,

and, as a curve in S2, its curvature κ = κ(u) is a positive non constant solution
of the following ODE

κ′′κ =
7

4
(κ′)

2
+

4

3
κ2 − 4κ4

such that

(κ′)
2

= −16

9
κ2 − 16κ4 + C̃1κ

7/2.

Remark 5.2. The constant C̃1 determines uniquely the curvature κ, up to a
translation of u, and then κ, f1 and f2 determines uniquely the curve σ.

We consider f1 = e3 and f2 = e4 and change the coordinates (u, v) in (κ, v).
Then, we get

YC̃1
(κ, v) =

(√
1−

(
4

3
√
C̃1

κ−3/4
)2

cosµ(κ),

√
1−

(
4

3
√
C̃1

κ−3/4
)2

sinµ(κ),

4

3
√
C̃1

κ−3/4 cos v, 4

3
√
C̃1

κ−3/4 sin v

)
,

(5.1)
where (κ, v) ∈ (κ01, κ02)× R, κ01 and κ02 are positive solutions of

−16

9
κ2 − 16κ4 + C̃1κ

7/2 = 0

and

µ(κ) = ±108

∫
κ

κ0

√
C̃1τ

3/4(
−16 + 9C̃1τ3/2

)√
9C̃1τ3/2 − 16 (1 + 9τ2)

dτ + c0,

with c0 ∈ R a constant and κ0 ∈ (κ01, κ02). We note that an alternative
expression for YC̃1

was given in [11].

Remark 5.3. The limits limκ↘κ01
µ(κ) = µ (κ01) and limκ↗κ02

µ(κ) = µ (κ02)
are finite.
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Remark 5.4. For simplicity, we choose κ0 = (3C̃1/64)2.

If we denote SC̃1
the image of YC̃1

, then we note that the boundary of SC̃1
is

made up from two circles and along the boundary, the mean curvature function
is constant (two different constants) and its gradient vanishes. More precisely,
the boundary of SC̃1

is given by the curves(√
1−

(
4

3
√
C̃1

κ
−3/4
01

)2

cosµ (κ01) ,

√
1−

(
4

3
√
C̃1

κ
−3/4
01

)2

sinµ (κ01) ,

4

3
√
C̃1

κ
−3/4
01 cos v, 4

3
√
C̃1

κ
−3/4
01 sin v

)
and (√

1−
(

4

3
√
C̃1

κ
−3/4
02

)2

cosµ (κ02) ,

√
1−

(
4

3
√
C̃1

κ
−3/4
02

)2

sinµ (κ02) ,

4

3
√
C̃1

κ
−3/4
02 cos v, 4

3
√
C̃1

κ
−3/4
02 sin v

)
.

These curves are circles in affine planes in R4 parallel to the Ox3x4 plane and

their radii are
(

4κ
−3/4
01

)
/
(

3
√
C̃1

)
and

(
4κ
−3/4
02

)
/
(

3
√
C̃1

)
, respectively.

At a boundary point, using the coordinates (µ, v), we get that the tangent
plane to the closure of SC̃1

is spanned by a vector which is tangent to the
corresponding circle and by−√1−

(
4

3
√
C̃1

κ
−3/4
0i

)2

sinµ (κ0i) ,

√
1−

(
4

3
√
C̃1

κ
−3/4
0i

)2

cosµ (κ0i) , 0, 0

 ,

where i = 1 or i = 2.
Thus, in order to construct a complete biconservative surface in S3, we can

expect to glue along the boundary two biconservative surfaces of type SC̃1
, corre-

sponding to the same C̃1. In fact, if we want to glue two surfaces corresponding
to C̃1 and C̃ ′1 along the boundary, then these constants have to coincide and
there is no ambiguity concerning along which circle of the boundary we should
glue the two pieces. But this process is not as clear as in R3 since we should
repeat it infinitely many times.

Further, as in the R3 case, we change the point of view and use the intrinsic
characterization of the biconservative surfaces in S3.

The surface (DC1
, gC1

) defined in Section 3 is not complete but it has the
following properties.

Theorem 5.5 ([21]). Consider (DC1
, gC1

). Then, we have

(a) KC1(ξ, θ) = K(ξ, θ),

1−K(ξ, θ) =
1

9
ξ8/3 > 0, K ′(ξ) = − 8

27
ξ5/3
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and gradK 6= 0 at any point of DC1 ;

(b) the immersion φC1
: (DC1

, gC1
)→ S3 given by

φC1(ξ, θ) =

(√
1− 1

C1ξ2
cos ζ(ξ),

√
1− 1

C1ξ2
sin ζ(ξ),

cos(
√
C1θ)√

C1ξ
,

sin(
√
C1θ)√
C1ξ

)
,

is biconservative in S3, where

ζ(ξ) = ±

∫
ξ

ξ00

√
C1τ

4/3

(−1 + C1τ2)
√
−τ8/3 + 3C1τ2 − 3

dτ + c1,

with c1 ∈ R a constant and ξ00 ∈ (ξ01, ξ02).

Sketch of the proof. The first item follows by standard arguments. For the
second item, we note that choosing C̃1 = 31/4 · 16C1 in (5.1) and using the
change of coordinates (κ, v) =

(
3−3/2ξ4/3,

(
3−1/8

√
C1θ

)
/4
)
, the metric induced

by Y31/4·16C1
coincides with gC1 .

Then, we define φC1 as

φC1
(ξ, θ) = Y31/4·16C1

(
3−3/2ξ4/3,

3−1/8
√
C1θ

4

)
.

Remark 5.6. The limits limξ↘ξ01 ζ(ξ) = ζ (ξ01) and limξ↗ξ02 ζ(ξ) = ζ (ξ02) are
finite.

Remark 5.7. For simplicity, we choose ξ00 = (9C1/4)
3/2

.

Remark 5.8. The immersion φC1
depends on the sign ± and on the constant

c1 in the expression of ζ. As the classification is up to isometries of S3, the sign
and the constant are not important, but they will play an important role in the
gluing process.

The construction of complete biconservative surfaces in S3 consists in two
steps, and the key idea is to notice that (DC1

, gC1
) is, locally and intrinsically,

isometric to a surface of revolution in R3.
The first step is to construct a complete surface of revolution in R3 which

on an open dense subset is locally isometric to (DC1 , gC1). We start with the
next result.

Theorem 5.9 ([21]). Let us consider (DC1
, gC1

) as above. Then (DC1
, gC1

) is
the universal cover of the surface of revolution in R3 given by

ψC1,C∗1
(ξ, θ) =

(
χ(ξ) cos

θ

C∗1
, χ(ξ) sin

θ

C∗1
, ν(ξ)

)
, (5.2)
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where χ(ξ) = C∗1/ξ,

ν(ξ) = ±

∫
ξ

ξ00

√
3τ2 − (C∗1 )

2 (−τ8/3 + 3C1τ2 − 3
)

τ4
(
−τ8/3 + 3C1τ2 − 3

) dτ + c∗1, (5.3)

C∗1 ∈
(

0,
(
C1 − 4/33/2

)−1/2)
is a positive constant and c∗1 ∈ R is constant.

Remark 5.10. The immersion ψC1,C∗1
depends on the sign ± and on the con-

stant c∗1 in the expression of ν. We denote by S±C1,C∗1 ,c
∗
1

the image of ψC1,C∗1
.

Remark 5.11. The limits limξ↘ξ01 ν(ξ) = ν (ξ01) and limξ↗ξ02 ν(ξ) = ν (ξ02)
are finite.

We note that the boundary of S±C1,C∗1 ,c
∗
1

is given by the curves(
C∗1
ξ01

cos
θ

C∗1
,
C∗1
ξ01

sin
θ

C∗1
, ν (ξ01)

)
and (

C∗1
ξ02

cos
θ

C∗1
,
C∗1
ξ02

sin
θ

C∗1
, ν (ξ02)

)
These curves are circles in affine planes in R3 parallel to the Oxy plane and
their radii are C∗1/ξ01 and C∗1/ξ02, respectively.

At a boundary point, using the coordinates (ν, θ), we get that the tangent
plane to the closure of S±C1,C∗1 ,c

∗
1

is spanned by a vector which is tangent to

the corresponding circle and by the vector (0, 0, 1). Thus, the tangent plane is
parallel to the rotational axis Oz.

Geometrically, we start with a piece of type S±C1,C∗1 ,c
∗
1

and by symmetry to

the planes where the boundary lie, we get our complete surface S̃C1,C∗1
; the

process is periodic and we perform it along the whole Oz axis.
Analytically, we fix C1 and C∗1 , and alternating the sign and with appropriate

choices of the constant c∗1, we can construct a complete surface of revolution
S̃C1,C∗1

in R3 which on an open subset is locally isometric to (DC1 , gC1). In fact,
these choices of + and −, and of the constants c∗1 are uniquely determined by
the “first” choice of +, or of −, and of the constant c∗1. We start with + and
c∗1 = 0.

The profile curve of S±C1,C∗1 ,c
∗
1

can be seen as the graph of a function depend-

ing on ν and this allows us to obtain a function F such that the profile curve
of S̃C1,C∗1

to be the graph of the function χ ◦ F depending on ν and defined on
the whole Oz (or Oν). The function F : R → [ξ01, ξ02] is periodic and at least
of class C3.

Theorem 5.12 ([21]). The surface of revolution given by

ΨC1,C∗1
(ν, θ) =

(
(χ ◦ F )(ν) cos

θ

C∗1
, (χ ◦ F )(ν) sin

θ

C∗1
, ν

)
, (ν, θ) ∈ R2,
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is complete and, on an open dense subset, it is locally isometric to (DC1 , gC1).
The induced metric is given by

gC1,C∗1
(ν, θ) =

3F 2(ν)

3F 2(ν)− (C∗1 )
2

(−F 8/3(ν) + 3C1F 2(ν)− 3)
dν2 +

1

F 2(ν)
dθ2,

(ν, θ) ∈ R2. Moreover, gradK 6= 0 at any point of that open dense subset, and
1−K > 0 everywhere.

From Theorem 5.12 we easily get the following result.

Proposition 5.13 ([21]). The universal cover of the surface of revolution given
by ΨC1,C∗1

is R2 endowed with the metric gC1,C∗1
. It is complete, 1−K > 0 on R2

and, on an open dense subset, it is locally isometric to (DC1 , gC1) and gradK 6=
0 at any point. Moreover any two surfaces

(
R2, gC1,C∗1

)
and

(
R2, gC1,C∗′1

)
are

isometric.

The second step is to construct effectively the biconservative immersion from(
R2, gC1,C∗1

)
in S3, or from S̃C1,C∗1

in S3. The geometric ideea of the construction

is the following: from each piece S±C1,C∗1 ,c
∗
1

of S̃C1,C∗1
we “go back” to (DC1

, gC1
)

and then, using φC1 and a specific choice of + or − and of the constant c1, we
get our biconservative immersion ΦC1,C∗1

. Again, the choices of + and −, and
of the constant c1 are uniquely determined (modulo 2π, for c1) by the “first”
choice of +, or of −, and of the constant c1 (see [21] for all details).

Some numerical experiments suggest that ΦC1,C∗1
is not periodic and it has

self-intersections along circles parallel to Ox3x4.
The projection of ΦC1,C∗1

on the Ox1x2 plane is a curve which lies in the

annulus of radii
√

1− 1/ (C1ξ201) and
√

1− 1/ (C1ξ202). It has self-intersections
and is dense in the annulus.

Concerning the biharmonic surfaces in S3 we have the following classification
result.

Theorem 5.14 ([4]). Let ϕ : M2 → S3 be a proper biharmonic surface. Then
ϕ(M) is an open part of the small hypersphere S2(1/

√
2).

Appendix

In the c = 0 case, the idea was to construct, by symmetry, a complete bicon-
servative surface in R3 starting with a piece of a biconservative surface. We
illustrate this in the following figure obtained for C0 = 1.
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In the c = 1 case, the construction of a complete biconservative surface in
S3 can be summarized in the next diagram, obtained for C1 = C∗1 = 1, c∗1 = 0
and we started with + in the expression of ν.
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(
M2, g

)

ξ01 ξ02 ξ

θ

(DC1 , gC1)

ISOMETRY

φ
C

1
=
φ
±C

1
,c

1

B
IC

O
N

S
E

R
V

A
T

IV
E

S3

ψC1,C∗1
= ψ±C1,C∗1 ,c

∗
1

ISOMETRY

S±C1,C∗1 ,c
∗
1
⊂ R3

S̃C1,C∗1
⊂ R3 complete

playing with the

constant c ∗
1 and ±

playing with the constant
c1 and ±

The projection of Φ1,1 on the Ox1x2 plane is represented in the next figure
(c1 = 0).
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x1

x2

The last two figures represent the signed curvature of the profile curve of
S̃C1,C∗1

and the signed curvature of the curve obtained projecting Φ1,1 on the
Ox1x2 plane.

ν

κ

ν

κ
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existence of holomorphic quadratic differentials on such surfaces. The case
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1 Introduction

Surface Theory in three-dimensional manifolds is a classical topic in Differen-
tial Geometry. Although the most extensive investigation has been carried out
in ambient three-manifolds with constant curvature, the so-called space forms,
there has been a growing interest in considering the broader family of homoge-
neous three-manifolds. Among the different geometrically distinguished families
of surfaces, we will focus on those which have constant mean curvature (cmc in
the sequel). When the codimension is bigger than one, a natural generalization
of cmc surfaces are those whose mean curvature vector is not constant but par-
allel in the normal bundle. These surfaces are called parallel mean curvature
surfaces (pmc from now on, see Definition 2.1), and enjoy some of the properties
of cmc surfaces in codimension one.

The aim of this work is to gather some results on the classification of pmc
surfaces when the codimension is two and the ambient space is homogeneous,
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sketching a parallelism with cmc surfaces in homogeneous three-manifolds. The
connection between these two theories principally comes from the fact that cmc
surfaces in totally umbilical cmc hypersurfaces of a four-manifold become pmc
surfaces (cf. Proposition 3.1). When the four-manifold is homogeneous typically
such a hypersurface is also homogeneous. Nonetheless, there could be pmc sur-
faces not factoring through a hypersurface in this sense, as we will discuss below.
The interested reader can refer to [DHM09] and [MP12] for an introduction to
cmc surfaces in homogeneous three-manifolds. Another approach that covers
both cmc and pmc surfaces as critical points of extended area functionals can
be found in [Sal10].

In the seventies, Ferus [Fer71] proved that an immersed pmc sphere in a
space form is a round sphere (cf. Theorem 4.3), and afterwards Chen [Che73]
and Yau [Yau74] classified pmc surfaces in space forms, showing that they are
cmc surfaces in three-dimensional totally umbilical hypersurfaces (cf. Theo-
rem 5.1). It is also important to mention the contribution of Hoffman [Hof73],
who classified pmc surfaces of R4 and S4 in terms of analytical functions assum-
ing their Gauss curvature does not change sign.

Almost thirty years later, Kenmotsu and Zhou [KZ00] undertook the classi-
fication of pmc surfaces in the complex space forms CP2 and CH2, based on a
result of Ogata [Oga95]. However, soon thereafter Hirakawa [Hir06] pointed out
a mistake in Ogata’s equation, but gave a classification of the pmc spheres in
CP2 and CH2. The mistake was corrected in [KO15] but the classification was
still incomplete. Finally, Kenmotsu has recently published a correction [Ken16]
that closes the classification problem. The complete classification then follows
from both [Hir06] and [Ken16].

The classification of pmc surfaces in four-dimensional manifolds has also
been treated in M3(c)×R, where Mn(c) denotes the n-dimensional space form
of constant sectional curvature c. On the one hand, de Lira and Vitório [dLV10]
classified the pmc spheres (cf. Theorem 4.12). On the other hand, Alencar, do
Carmo and Tribuzy [ACT10] proved reduction of codimension for pmc surfaces
in Mn(c)×R (cf. Theorem 5.3) also classifying pmc spheres (cf. Theorem 4.13).
Mendonça and Tojeiro [MT14] improved Alencar, do Carmo and Tribuzy’s result
under some additional conditions (see Section 5.1).

A few years ago, the second author and Urbano [TU12] classified the pmc
spheres in the product four-manifolds S2 × S2 and H2 × H2, as well as a large
family of pmc surfaces that satisfy an extra condition on the extrinsic normal
curvature (cf. Theorem 5.8). Fetcu and Rosenberg also tackled the problem in
other ambient manifolds obtaining several partial results, namely, in S3×R and
H3 × R [FR12], in Mn(c) × R [FR13], in CPn × R and CHn × R [FR14] and
also in Sasakian space forms [FR15], including the Heisenberg space of any odd
dimension.

An interesting family where to study the classification problem for pmc sur-
faces in is that of the four-dimensional Thurston geometries, i.e., homogeneous
four-manifolds whose isometry group acts transitively and effectively on them,
and the stabilizer subgroup at each point is compact. Usually the isometry
group is required to be maximal in the sense that it cannot be enlarged to
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another subgroup. Under these assumptions, there are 19 types of Thurston
geometries in dimension 4, listed in Table 1 below. We will emphasize the prod-
uct geometries, which might be the first spaces where pmc surface should be
understood:

• The product spaces M3(c)×R (see Sections 4.4 and 5.2). The classification
of the pmc spheres was done by de Lira and Vitório [dLV10], but the
general classification remains open.

• The product spaces M2(c1)×M2(c2). The classification of spheres is known
when c1 = c2 (see Sections 4.3 and 5.4), but the general case remains still
open, although there are some partial results (see Section 4.5).

• The product spaces Nil3×R, S̃l2(R)×R and Sol3×R (the latter is included
in the family Sol4m,n in Table 1).

Dropping the condition on the maximality of the isometry group, a simply con-
nected homogeneous four-dimensional product manifold is either of the form
M2(c1)×M2(c2) or G×R, where G is a Lie group endowed with a left-invariant
metric (see [MP12]). In the latter family, it is worth highligthing the fam-
ily E(κ, τ) × R where E(κ, τ), κ − 4τ2 6= 0, denotes the two-parameter fam-
ily of simply connected three-manifolds with isometry group of dimension four
(see [VdV08], [DHM09] and the references therein).

The existence of holomorphic quadratic differentials for pmc surfaces has
been central in their classification. Note that cmc surfaces in E(κ, τ)-spaces
admit a holomorphic quadratic differential called the Abresch-Rosenberg dif-
ferential [AR05]. This fact plays a key role in the definition of holomorphic
quadratic differentials for pmc surfaces in H3 ×R and S3 ×R (see Section 5.2).

Geometry Isotropy dim(Iso) Kähler
S4, R4, H4 SO4 10 No, except R4

CP2, CH2 U2 9 Yes
S3 × R, H3 × R SO3 7 No
S2 × S2, H2 × H2, S2 × R2,

S2 ×H2, H2 × R2
SO2 × SO2 6 Yes

S̃l2(R)× R, Nil3 × R, Sol40 SO2 5 No
F4 (S1)1,2 5 Yes

Nil4, Sol4m,n, Sol41 {1} 4 No

Table 1: List of Thurston four-dimensional geometries, their isotropy group
(cf. [Wal86, §1] and [Mai98]), the dimension of their isometry group and
whether they admit a Kähler structure compatible with the geometric struc-
ture (cf. [Wal86, Theorem 1.1]). The spaces S̃l2(R) × R, Nil3 × R, Sol40, and
Sol41 are not Kähler but do admit complex structures. Here, (S1)m,n denotes
the image of the unit circle S1 ⊂ C in U2 by z 7→ (zm, zn).

It is worth mentioning that pmc surfaces have been also studied in pseudo-
Riemannian manifolds. A classification was achieved for non-degenerate pmc
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surfaces in the four-dimensional Lorentzian space forms [CV09]. It turns out
that, as in the Riemannian case, all pmc surfaces lie in three-dimensional sub-
manifolds. This classification was afterwards extended to any codimension and
any signature of the metric (see [Che09] for the spacelike case and [Che10, FH10]
for the timelike case). In the sequel we will restrict ourselves to the Riemannian
case.

2 Definitions and first properties

Let M be an n-dimensional orientable Riemannian manifold with metric 〈 , 〉
and Levi-Civita connection ∇, and let φ : Σ→M be an isometric immersion of
an orientable Riemannian surface Σ. The tangent space TpΣ will be identified
with dφ(TpΣ) ⊂ Tφ(p)M in the sequel, so the metric on Σ will also be denoted by
〈 , 〉 since the immersion is isometric. Therefore Tφ(p)M admits an orthogonal

decomposition Tφ(p)M = TpΣ⊕T⊥p Σ, where T⊥Σ is the so-called normal bundle
of the immersion. This leads to considering the space X(Σ) of (tangent) vector
fields, i.e., smooth sections of TΣ, and the space X⊥(Σ) of normal vector fields,
i.e., smooth sections of T⊥Σ. We will denote by u> ∈ TpΣ and u⊥ ∈ T⊥p Σ the
components of a vector u ∈ Tφ(p)M with respect to this decomposition.

Given a normal vector field η ∈ X⊥(Σ), we can define the shape operator
associated with η as the self-adjoint endomorphism Aη : X(Σ)→ X(Σ) given by
Aη(X) = −(∇Xη)>. Then the second fundamental form σ : X(M) × X(M) →
X⊥(Σ) satisfies 〈σ(X,Y ), η〉 = 〈Aη(X), Y 〉 for all X,Y ∈ X(Σ) and η ∈ X⊥(Σ).
The mean curvature vector H of the immersion at p ∈ Σ is defined as H(p) =
1
2 (σ(e1, e1) + σ(e2, e2)), where {e1, e2} is an orthonormal basis of TpΣ.

The normal bundle T⊥Σ can also be endowed with a connection∇⊥ : X(Σ)×
X⊥(Σ) → X⊥(Σ) defined as ∇⊥Xη = (∇Xη)⊥ for all X ∈ X(Σ) and η ∈ X⊥(Σ).
This connection is called the normal connection, and gives rise to a curvature
tensor R⊥ : X(Σ)× X(Σ)× X⊥(Σ)→ X⊥(Σ), given by

R⊥(X,Y )η = ∇⊥X∇⊥Y η−∇⊥Y∇⊥Xη−∇⊥[X,Y ]η, X, Y ∈ X(Σ), η ∈ X⊥(Σ). (2.1)

Definition 2.1 (Parallel mean curvature immersion). An isometric immersion
φ : Σ → M is said to have parallel mean curvature (pmc for short) if its mean
curvature vector H ∈ X⊥(Σ) is parallel in the normal bundle, i.e., ∇⊥H = 0,
but not identically zero.

Remark 2.2. The minimal case H = 0 has been excluded from Definition 2.1
due to several reasons that will become clear after Lemma 2.4. Essentially, it
is not possible to define a natural orthonormal frame in the normal bundle if
H = 0, which is crucial for some of the arguments below.

Although several results in higher codimension will be mentioned hereinafter,
let us assume now that the codimension is 2, where pmc surfaces enjoy additional
properties. In the first place, we will furnish the normal bundle with a natural
orientation provided that both M and Σ are oriented, and define a notion of
curvature in the normal bundle.
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Definition 2.3. A basis {η, ν} in T⊥p Σ is said to be positively oriented if and
only if {e1, e2, η, ν} is positively oriented in Tφ(p)M whenever {e1, e2} is a posi-
tively oriented basis of TpΣ.

The normal curvature of φ is the smooth function K⊥ ∈ C∞(Σ) defined by

K⊥(p) = 〈R⊥(e1, e2)e3, e4〉, (2.2)

where {e1, e2, e3, e4} is an orthonormal basis of TpM such that {e1, e2} and
{e3, e4} are positively oriented bases in TpΣ and T⊥p Σ, respectively.

Lemma 2.4. Let φ : Σ → M be a pmc immersion. Then the mean curvature
vector H has constant length (in particular, H never vanishes). If additionally
the codimension is 2, then:

(i) There exists a unique parallel normal field H̃ ∈ X⊥(Σ) such that the global

frame {H̃/|H|, H/|H|} is positively oriented and orthonormal in T⊥Σ.

(ii) K⊥ is identically zero, i.e., the normal bundle is flat.

(iii) The Ricci equation for the Riemann curvature tensor R of M reads

〈R(X,Y )H, η〉 = 〈[Aη, AH ]X,Y 〉, X, Y ∈ X(Σ), η ∈ X⊥(Σ). (2.3)

Remark 2.5. Flatness of the normal bundle of a pmc surface is a typical property
in codimension 2. If the codimension is bigger than 2, it is possible to define
likewise the normal sectional curvature of the normal bundle, but it does not
necessarily vanish for pmc surfaces.

Proof. Since H is parallel in the normal bundle we have

X(|H|2) = 2〈∇XH,H〉 = 2〈∇⊥XH,H〉 = 0,

for all X ∈ X(Σ), so |H| is constant on Σ. As for (i), the normal bundle is
orientable in the sense of Definition 2.3, so we can define a rotation Rp of angle
π/2 in T⊥p Σ such that {η,Rpη} is positively oriented for all η ∈ T⊥p Σ. This
rotation leaves the normal bundle of Σ invariant, and should not be confused
with a possible complex structure on M .

Hence H̃ = −RH is such that {H̃/|H|, H/|H|} is a positively oriented global

orthonormal frame of the normal bundle. Moreover, H̃ is also parallel since it
has constant length and is orthogonal to the parallel vector field H. Given
a positively oriented orthonormal frame {e1, e2} in TΣ, we can consider e3 =

H̃/|H| and e4 = H/|H|, so Equation (2.1) and the fact that H̃ is parallel yield

|H|R⊥(e1, e2)e3 = ∇⊥e1∇
⊥
e2H̃ −∇

⊥
e2∇

⊥
e1H̃ −∇

⊥
[e1,e2]H̃ = 0,

|H|R⊥(e1, e2)e4 = ∇⊥e1∇
⊥
e2H −∇

⊥
e2∇

⊥
e1H −∇

⊥
[e1,e2]H = 0.

(2.4)

From (2.2) and the first equation in (2.4), we get that K⊥ ≡ 0, so (ii) is
proved. Finally, given X,Y ∈ X(Σ) and ξ, η ∈ X⊥(Σ), the Ricci equation reads
R(X,Y, ξ, η) = R⊥(X,Y, ξ, η)−〈[Aξ, Aη]X,Y 〉, so (iii) is a consequence of taking
ξ = H in the Ricci equation and of the second identity in (2.4).
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3 The relation between cmc and pmc
surfaces

Parallel mean curvature surfaces are often considered the natural generalization
to higher codimension of cmc surfaces in three-manifolds, so a leading idea in
the study of pmc surfaces in four-manifolds is to reduce the codimension and rely
on results for cmc surfaces. Our first approach to this idea will consist in finding
natural assumptions on a hypersurface N of a four-manifold M guaranteeing
that any cmc surface immersed in N has parallel mean curvature vector in M .
This is evident if N is totally geodesic, but this condition can be relaxed as the
following result ensures.

Proposition 3.1. Let N be a totally umbilical cmc hypersurface of a four-
manifold M . Then every cmc surface immersed in N is either pmc or minimal
in M .

Proof. Let φ : Σ → N be a cmc immersion with second fundamental form σ̃
and mean curvature vector H̃. The immersion φ can also be regarded as an
immersion into M , so let us denote by σ and H the second fundamental form
and the mean curvature vector of the immersion φ : Σ → M , respectively. We
will also define σ̂ and Ĥ as the second fundamental form and the mean curvature
vector of N as a hypersurface of M , respectively.

Since σ = σ̃+ σ̂, taking the trace on Σ we get that 2H = 2H̃+ 3Ĥ− σ̂(η, η),
where η is a unit normal vector field to φ(Σ) tangent to N . Taking into account

that N is totally umbilical, i.e., σ̂(x, y) = 〈x, y〉Ĥ for all x, y ∈ TN , we finally

get that H = H̃ + Ĥ. Taking the derivative of this last equation with respect
to a tangent vector field V ∈ X(Σ) gives

∇⊥VH =
(
∇V (H̃ + Ĥ)

)⊥
= (∇V H̃)⊥ + (∇V Ĥ)⊥

=
(
∇NV H̃ + σ̂(V, H̃)

)⊥
+ (∇V Ĥ)⊥

= (∇NV H̃)⊥ + (〈V, H̃〉H̃)⊥ + (∇V Ĥ)⊥ = (∇V Ĥ)⊥,

where ∇N is the Levi-Civita connection of N and we have taken into account
that (∇NV H̃)⊥ = 0 since H̃ has constant length. We distinguish two cases:

• If Ĥ = 0 (N is a totally geodesic hypersurface of M), then ∇⊥VH =

(∇V Ĥ)⊥ = 0 and H is parallel, so we are done.

• Assume now that Ĥ 6= 0. Observe that 〈∇V Ĥ, Ĥ〉 = 0 since Ĥ has

constant length, so (∇V Ĥ)⊥ is proportional to a unit vector field η, normal
to Σ, but tangent to N . Hence

(∇V Ĥ)⊥ = 〈∇V Ĥ, η〉η = −〈Ĥ,∇V η〉η = −〈Ĥ, σ̂(V, η)〉η

= −〈Ĥ, 〈V, η〉Ĥ〉η = 0,

where we used again that N is a totally umbilical hypersurface in M .
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Remark 3.2. Under the assumptions of Proposition 3.1, the mean curvature
vector H of Σ in M is just the sum of the mean curvature vector H̃ of Σ in
N and the mean curvature vector Ĥ of N in M , i.e., we have the orthogonal
decomposition H = H̃ + Ĥ. Hence Σ is pmc if and only if ∇⊥H = 0 and Σ is
not minimal in N or N is not totally geodesic in M .

Let us analyse how Proposition 3.1 can be applied in different four-manifolds
where totally umbilical surfaces are classified in order to construct pmc surfaces.

1. In the space forms R4, S4 and H4, totally umbilical hypersurfaces have
constant sectional curvature and constant mean curvature. Hence, the
pmc surfaces provided by Proposition 3.1 are cmc surfaces in the three-
dimensional space forms R3, S3 or H3 embedded totally umbilically in the
four-dimensional space form.

2. There are no totally umbilical hypersurfaces in the complex space forms
CP2 and CH2 [TT63]. This is one of the difficulties when trying to produce
examples of pmc immersions. In fact, there are no pmc spheres in CP2

or in CH2 (cf. Theorem 4.6).

3. In S3 × R and H3 × R there are plenty of totally umbilical hypersurfaces
since both spaces are locally conformally flat, but only the totally geodesic
ones have constant mean curvature [MT14]. Since totally geodesic sub-
manifolds in a product are the product or totally geodesic submanifolds,
we conclude that such totally geodesic hypersurfaces are locally congruent
to S3, H3, S2 × R, or H2 × R.

4. In a Riemannian product M2(c1) × M2(c2) of two surfaces of constant
Gaussian curvatures c1 and c2, with (c1, c2) 6= (0, 0), the only totally
umbilical hypersurfaces with constant mean curvature are totally geodesic.
Hence, they are open subsets of products of one surface and a geodesic in
the other surface. This was proven for S2 × S2 and H2 ×H2, where both
factors have the same curvature, in [TU12], but the proof can easily be
extended to the other cases.

5. Consider E(κ, τ) × R, the Riemannian product of a homogeneous three-
space with the Euclidean line. If κ− 4τ2 = 0, the first factor has constant
sectional curvature and the classification of totally umbilical hypersurfaces
with constant mean curvature has been treated in item 3. If τ = 0 (and
κ 6= 0), the first factor is either S2 × R or H2 × R, so the space under
consideration is either S2 × R2 or H2 × R2, which have been treated in
item 4. In all other cases, if was proven in [ST09, VdV08] that there
are no totally umbilical surfaces in E(κ, τ), so the only totally umbilical
hypersurfaces of E(κ, τ) × R are open parts of the slices E(κ, τ) × {t0}.
A more general result in G × R, where G is a simply connected three-
dimensional Lie group endowed with a left-invariant metric, follows from
the classification of totally umbilical surfaces in G (see [MS15]).
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4 Quadratic differentials and the
classification of pmc spheres

As in the theory of cmc surfaces in homogeneous Riemannian three-manifolds,
the existence of quadratic differentials that are holomorphic for pmc immersions
comes in handy in some ambient four-manifolds. For instance, in symmetric
four-manifolds such as

• the space forms R4, S4 and H4,

• the complex hyperbolic and projective spaces CP2 and CH2,

• the Riemannian products S2 × S2 and H2 ×H2,

it is possible to define two holomorphic quadratic differentials for pmc surfaces.
It is also hitherto possible to define one holomophic quadratic differential in
a few other cases, such as in M3(c) × R and M2(c1) × M2(c2) (de Lira and
Vitório [dLV10] and Kowalczyk [Kow11]), or in Sasakian space forms (Rosen-
berg and Fetcu [FR15]). This is instrumental, for instance, in the classification
of pmc spheres in the aforementioned spaces, for the fact that a non-trivial
holomorphic differential vanishes often gives precious information.

Throughout this section, we will consider a pmc immersion φ : Σ→M of an
oriented surface Σ into a four-manifold M with second fundamental form σ. As
in the previous section, ∇ and ∇ will denote the Levi-Civita connections in Σ
and M , respectively, and R will stand for the Riemann curvature tensor of M .
Also, z = x+ iy will be a conformal parameter on Σ with conformal factor e2u,
giving rise to the usual basic vectors ∂z = 1

2 (∂x − i∂y) and ∂z̄ = 1
2 (∂x + i∂y).

Lemma 4.1. Under the previous assumptions, the following formulae hold:

(i) 〈∂z, ∂z̄〉 = 1
2e

2u and 〈∂z, ∂z〉 = 0.

(ii) ∇∂z∂z̄ = ∇∂z̄∂z = 0 and ∇∂z∂z = 2uz∂z.

(iii) 2σ(∂z̄, ∂z) = e2uH.

(iv) 〈σ(∂z, ∂z), η〉z̄ = 〈R(∂z̄, ∂z)∂z, η〉 for any parallel normal section η.

Proof. (i) is a consequence of z being a conformal parameter, (ii) is a direct com-
putation using Koszul’s formula and (iii) is straightforward from the definition
of ∂z and ∂z̄. We prove (iv):

〈σ(∂z, ∂z), η〉z̄ = 〈∇⊥∂z̄σ(∂z, ∂z), η〉+ 〈σ(∂z, ∂z),∇⊥∂z̄η〉
= 〈(∇∂z̄σ)(∂z, ∂z) + 2σ(∇∂z̄∂z, ∂z), η〉
= 〈(∇∂zσ)(∂z̄, ∂z) +R(∂z̄, ∂z)∂z, η〉
= 〈∇⊥∂zσ(∂z̄, ∂z)− σ(∇∂z∂z̄, ∂z)− σ(∂z̄,∇∂z∂z) +R(∂z̄, ∂z)∂z, η〉
= 〈∇⊥∂z ( 1

2e
2uH)− uze2uH +R(∂z̄, ∂z)∂z, η〉 = 〈R(∂z̄, ∂z)∂z, η〉,
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where we have taken into account (ii), (iii), the fact that η is parallel, the defi-
nition of the covariant derivative of σ and the Codazzi equation (∇Xσ)(Y,Z)−
(∇Y σ)(X,Z) = (R(X,Y )Z)⊥.

From now on z = x+ iy will denote a conformal parameter on Σ compatible
with the orientation and H̃ is given in Lemma 2.4.

4.1 Space forms

Let M = M4(c) be the space form of constant sectional curvature c ∈ R, and
define in conformal coordinates the quadratic differentials

Θ(z) = 〈σ(∂z, ∂z), H〉dz ⊗ dz,

Θ̃(z) = 〈σ(∂z, ∂z), H̃〉dz ⊗ dz.
(4.1)

Equation (4.1) defines globally Θ and Θ̃, i.e., their expressions do not depend
upon the choice of the conformal parameter.

Proposition 4.2. Let φ : Σ → M4(c) be a parallel mean curvature immersion

of an oriented surface Σ. Then Θ and Θ̃ defined by (4.1) are holomorphic
quadratic differentials.

Proof. Taking into account that 〈R(∂z̄, ∂z)∂z, η〉 is zero for any normal vector
field η in a space form, the statement follows from Lemma 4.1.

Theorem 4.3 (Ferus [Fer71], see also [Hof73, Theorem 2.2]). Let φ : S →M4(c)
be a pmc immersion of a sphere S in a space form. Then φ(S) is contained in
a totally umbilical hypersurface of M4(c) as a minimal surface.

Proof. For illustration purposes, we will prove the case c = 0, that is, M4(0) =

R4. Since S is a sphere and φ is a pmc immersion, both Θ and Θ̃ defined in (4.1)
vanish. Since Θ = 0, we obtain that AH = |H|2Id (i.e., φ is pseudo-umbilical).

Arguing as in the classical proof that complete and connected totally umbil-
ical surfaces in R3 are spheres or planes, we consider the function f : S → R4

given by f(p) = Hp + |Hp|2φ(p). For any tangent vector field V ∈ X(S) we get

V (f) = V (H + |H|2φ) = ∇VH + |H|2V = −AHV +∇⊥VH + |H|2V = 0,

by using the pseudo-umbilicity, and identifying TpS with its image by dφ in
Tφ(p)M4(c). Hence f is constant a ∈ R4, so the immersion satisfies∣∣∣∣φ− a

|H|2

∣∣∣∣2 =
1

|H|2
.

This means that φ(S) is contained in a sphere S3 ⊂ R4 of radius 1/|H|, which

is totally umbilical in R4 with mean curvature |Ĥ| = |H|. Thus the mean

curvature H̃ = H − Ĥ of S as a surface of S3 is zero (observe that H and Ĥ

have the same length, and H̃ and Ĥ are orthogonal, see Remark 3.2).
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Remark 4.4. In the proof of Theorem 4.3 we have only used one of the holomor-
phic differentials associated to the pmc immersion to get the result. Neverthe-
less, both holomorphic differentials will be needed to get a complete classification
of pmc immersions in space forms (cf. Theorem 5.1) as well as to classify pmc
spheres in S2 × S2 and H2 ×H2 (cf. Theorem 4.9).

Besides, [ACT10] showed that the spheres are not the only pmc surfaces in
space forms for which the quadratic differential Θ vanishes identically: there is
also a complete non-flat example in Hn with non-negative Gaussian curvature
(cf. Remark 4.10).

4.2 Complex hyperbolic and projective spaces

Let us consider M = CM2(c), i.e., the complex projective or hyperbolic space of
constant holomorphic curvature c, also including C2 = CM2(0). The situation
in the complex space forms is quite similar to that of real space forms, due to the
fact that Fetcu [Fet12] defined a couple of holomorphic quadratic differentials
associated with pmc immersions in CM2(c).

The Riemann tensor of these spaces reads

R(X,Y )Z =
c

4

{
〈Y, Z〉X−〈X,Z〉Y +〈JY , Z〉JX−〈JX,Z〉JY −2〈X, JY 〉JZ

}
,

(4.2)
where J : X(M)→ X(M) is the complex structure, which satisfies:

1. J2 = −Id.

2. J is an isometry, i.e., 〈JX, JY 〉 = 〈X,Y 〉.

3. J is parallel, i.e., ∇XJY = J∇XY , being ∇ the Levi-Civita connection
of CM2(c).

Proposition 4.5 ([Fet12, Proposition 2.3 and Section 3.1]). Let φ : Σ →
CM2(c) be a pmc immersion of an oriented suface Σ, and let z = x + iy be
a conformal parameter on Σ. Then

Θ(z) =
(
8|H|2〈σ(∂z, ∂z), H〉+ 3c〈Jφz, H〉2

)
dz ⊗ dz,

Θ̃(z) =
(
8i|H|2〈σ(∂z, ∂z), H̃〉+ 3c〈Jφz, H̃〉2

)
dz ⊗ dz,

(4.3)

define two quadratic holomorphic differentials on Σ.

On the one hand, if c = 0, then these differentials reduce to the corresponding
diffentials in Cn ≡ R2n. On the other hand, the appearance of the new extra
term 〈JΦz, H〉 can be motivated by the fact that the Codazzi equation in CM2(c)
is not as simple as in the case of M4(c).

Proof. The holomorphicity follows easily from Lemma 4.1, from the expression
of the Riemann tensor (4.2) and from the following equalities:

〈JH, H̃〉 = 2i|H|2e−2u〈JΦz,Φz̄〉, (JΦz)
> = 2e−2uΦz.
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Let us justify the first one, by showing that if {e1, e2, e3, e4} is an oriented
orthonormal basis, then 〈Je1, e2〉 = 〈Je3, e4〉. Let C = 〈Je1, e2〉, which satisfies
C2 ≤ 1 by Cauchy-Schwarz inequality. If C2 = 1, then Je1 = ±e2, so Je3 = ±e4

and we are done. If C2 < 1, let us define ẽ3 = (1 − C2)−1/2(Ce1 + Je2) and
ẽ4 = (1 − C2)−1/2(Je1 − Ce2). Then {ẽ3, ẽ4} is an oriented orthonormal basis
spanning the same plane as {e3, e4}, so they differ in a rotation of angle θ, and
it is easy to check that 〈Je3, e4〉 = 〈Jẽ3, ẽ4〉 = C.

Although there exist two holomorphic quadratic differentials, there is no
direct proof of the classification of the pmc spheres in CM2(c). All the known
proofs use the structure equations for pmc surfaces in CM2(c) provided by
Ogata [Oga95]. The proof given by Fetcu in [Fet12, Corollary 3.2] uses the two
holomorphic differentials to show that such a sphere must have constant Gauss
curvature, so the result follows from [Hir06, Theorem 1.1].

Theorem 4.6 ([Hir06, Corollary 1.2] and also [Fet12, Corollary 3.2]). Let φ :
S → CM2(c) a pmc immersion of a sphere S. Then c = 0 and S is a round
sphere in a hyperplane of C2.

This non-existence result of pmc spheres in CH2 and CP2 contrasts with the
rest of the symmetric spaces, where there do exist pmc spheres (cf. Theorem 4.3
and Theorem 4.9). In other Thurston four-geometries like M3(c)×R, M2(c1)×
M2(c2), E(κ, τ) × R or Sol3 × R, there always exist pmc spheres, since H3

and the E(κ, τ)-spaces or Sol3 do admit cmc spheres (see the comments below
Proposition 3.1).

4.3 The Riemannian products S2 × S2 and H2 ×H2

Now let M = M2(ε) ×M2(ε), where M2(ε) stands for the 2-sphere S2 (ε = 1)
or the hyperbolic plane H2 (ε = −1). Since both S2 and H2 admit a complex
structure J , we can define on M two different (but equivalent) complex struc-
tures J1 = (J, J) and J2 = (J,−J) (see [TU12, Section 3]). Moreover, we can
define a product structure P : TM → TM as P (u, v) = (u,−v), which enjoys
the following properties:

1. P is a self-adjoint linear involutive isometry of every tangent plane of M .

2. J2 = PJ1 = J1P

3. P is parallel, i.e., ∇XPY = P∇XY for all X,Y ∈ X(M).

The operator P allows us to write the Riemann tensor of M2(ε)×M2(ε) as

R(X,Y )Z =
ε

2

[
〈Y,Z〉X − 〈X,Z〉Y + 〈Y, PZ〉PX − 〈X,PZ〉PY

]
. (4.4)

In particular, M2(ε)×M2(ε) is an Einstein manifold of constant scalar curvature
4ε (this is no longer true in the general case M2(c1) ×M2(c2)). The existence
of two holomorphic differential was shown in [TU12].
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Proposition 4.7 ([TU12, Proposition 3]). Let φ : Σ→M2(ε)×M2(ε) be a pmc
immersion of an oriented suface Σ, and let z = x+ iy be a conformal parameter
on Σ. Then

Θ1(z) =

(
2〈σ(∂z, ∂z), H + iH̃〉+

ε

4|H|2
〈J1φz, H + iH̃〉2

)
dz ⊗ dz,

Θ2(z) =

(
2〈σ(∂z, ∂z), H − iH̃〉+

ε

4|H|2
〈J2φz, H − iH̃〉2

)
dz ⊗ dz,

(4.5)

are two holomorphic quadratic differentials.

Proof. It also follows from Lemma 4.1 after some manipulations, as in the pre-
vious cases.

Remark 4.8. The differentials Θ1 and Θ2 can be chosen in different ways, since
any linear combination of them is also holomorphic. As a particular case and
taking into account that 〈J1φz, H〉 = i〈J1φz, H̃〉, 〈J2φz, H〉 = −i〈J2φz, H̃〉, and
J2 = PJ1, we can define the following two holomorphic quadratic differentials
(cf. equation (4.3)):

Θ =
(

4|H|2〈σ(∂z, ∂z), H〉+ ε
[
〈J1φz, H〉2 + 〈J1φz, PH〉2

])
dz ⊗ dz

Θ̃ =
(

4i|H|2〈σ(∂z, ∂z), H̃〉 − ε
[
〈J1φz, H̃〉2 − 〈J1φz, P H̃〉2

])
dz ⊗ dz

(4.6)

It is easy to show that Θ = |H|2(Θ1 + Θ2) and Θ̃ = |H|2(Θ1 − Θ2), so these
expressions make it clear that Θ1 and Θ2 extend the classical differentials in R4

given by (4.1).

Using that these two differentials vanish on spheres, it is shown in [TU12]
that the extrinsic normal curvature of an immersed pmc sphere has to be zero.
Then the following classification is a consequence of Theorem 5.8.

Theorem 4.9 ([TU12, Corollary 1]). Let φ : S → M2(ε) ×M2(ε), ε2 = 1, be
a pmc immersion of a sphere S. Then φ is a cmc sphere in a totally geodesic
hypersurface of M2(ε)×M2(ε).

Remark 4.10. It is interesting to highlight that pmc spheres are not the only
surfaces with vanishing holomorphic differentials. Indeed, the product of two
hypercycles in H2×H2 with curvatures satisfying k2

1 +k2
2 = 1 and a special em-

bedding of the hyperbolic plane in H2×H2 also satisfy that condition (see [TU12,
Theorem 4]).

4.4 The Riemannian products M3(c)× R
The study of pmc surfaces in M = M3(c) × R was tackled by de Lira and
Vitório [dLV10], as well as by Alencar, Do Carmo and Tribuzy [ACT10]. As in
all the previous cases these authors found a holomorphic quadratic differential.
In spite of their claim that there are two holomorphic differentials Qh and Qv,
a deeper analysis shows that Qh and Qv coincide.
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The Riemann tensor of M3(c)× R is given by:

R(X,Y )Z =
c

4

(
〈Y + PY ,Z〉(X + PX)− 〈X + PX,Z〉(Y + PY )

)
= c
(
〈Y,Z〉X − 〈X,Z〉Y − 〈Y, ζ〉〈Z, ζ〉X + 〈X, ζ〉〈Z, ζ〉Y+

+ 〈X,Z〉〈Y, ζ〉ζ − 〈Y, Z〉〈X, ζ〉ζ
)
,

(4.7)

where P is the product structure in T (M3(c) × R) ≡ TM3(c) × R given by
P (u, t) = (u,−t) for all u ∈ TM3(c), and t ∈ R, and ζ is a unit tangent
vector to the factor R. The second expression in (4.7) follows from the identity
PX = X − 2〈X, ζ〉ζ for all X ∈ X(M).

Proposition 4.11. Let φ : Σ→M3(c)×R be a pmc immersion of an oriented
surface Σ and let z = x+ iy be a conformal parameter. Then

Θ(z) =
(
2〈σ(∂z, ∂z), H〉 − c〈φz, ζ〉2

)
dz ⊗ dz

=
(
2〈σ(∂z, ∂z), H〉+ c

2 〈φz, Pφz〉
)
dz ⊗ dz

(4.8)

is a holomorphic quadratic differential in Σ.

Proof. Both expressions for Θ coincide, which follows from the equality Pφz =
φz − 2〈φz, ζ〉ζ and the fact that z is a conformal parameter, i.e., 〈φz, φz〉 =
0. Using now Lemma 4.1 and the second equality in (4.7), we deduce that
〈σ(∂z, ∂z), H〉z̄ = c

2e
2u〈φz, ζ〉〈H, ζ〉, and also

(〈φz, ζ〉2)z̄ = 2〈φz, ζ〉〈∇∂z̄φz, ζ〉 = e2u〈φz, ζ〉〈H, ζ〉,

where we have taken into account that ζ is a parallel vector field. Consequently,
the differential is holomorphic.

De Lira and Vitório use this quadratic differential Θ to classify the pmc
spheres in M3(c)×R by showing that there is a principal frame {e1, e2} on the
surface such that the the associated curvature lines to e1 lie in horizontal slices.
Then an analysis of these curvature lines leads to the following result:

Theorem 4.12 ([dLV10, Theorem 3.2]). The only pmc spheres immersed in
M3(c) × R are the rotationally invariant cmc surfaces embedded in totally
geodesic cylinders M2(c)× R or in totally geodesic slices M3(c)× {t0}, t0 ∈ R.

A result of the same kind is obtained by Alencar, do Carmo and Tribuzy in
M4(c) × R (codimension 3), as we show next. One expects that a pmc sphere
in M4(c) × R lies either in a slice M4(c) × {t0} or in some M2(c) × R as a
cmc sphere (hence rotationally invariant). Unfortunately, a further reduction
of the codimension still remains an open problem, which would give the complete
classification of pmc spheres in Mn(c)× R for all n ≥ 4 (see Theorem 5.3).

Theorem 4.13 ([ACT10, Theorem 2]). Let φ : S → M4(c) × R be a pmc
immersion of a sphere S. Then one of the following assertions holds:
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(i) φ(S) is contained in a totally umbilical hypersurface of M4(c)× {t0} as a
cmc surface.

(ii) Considering M4(c) × R isometrically embedded in R6 (c = 1) or R6
1 (c =

−1), there is a plane Π such that φ(S) is invariant under rotations which
fix Π⊥, and the level curves of the height function p 7→ 〈φ(p), ζ〉 are circles
lying in planes parallel to Π.

Remark 4.14. Mendonça and Tojeiro [MT14] improve item (ii) in the previous
result by showing that, in general codimention, φ(Σ) is a rotationally surface
in a totally geodesic Mm(c) × R, m ≤ 4, over a curve in a totally geodesic
Ms(c)× R, s ≤ 3.

4.5 The Riemannian products M2(c1)×M2(c2).

Let us finally consider M = M2(c1)×M2(c2). Following the notation introduced
in Section 4.3, the Riemann tensor of M can be expressed as

R(X,Y )Z = c1R0(P1X,P1Y )Z + c2R0(P2X,P2Y )Z,

where R0(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y , P1 = 1
2 (I + P ) and P2 = 1

2 (I − P ) are
the projections to the factors, i.e., P1(u, v) = (u, 0) and P2(u, v) = (0, v).

De Lira and Vitório [dLV10] defined a holomorphic quadratic differential for
pmc surfaces in S2×H2 (where the constant Gauss curvatures of the factors are
exactly opposite) and the holomorphicity of this differential also follows from
the ideas in [TU12]. Kowalczyk [Kow11] extended this by defining a quadratic
differential in the general case of M2(c1)×M2(c2), cf. the next proposition. In
contrast to the previous cases, the classification of pmc spheres in M2(c1) ×
M2(c2) is still an open problem, even in S2 × H2. The natural candidates are
those given by Proposition 3.1, i.e., cmc spheres immersed in totally geodesic
hypersurfaces of M2(c1)×M2(c2).

Proposition 4.15. Let φ : Σ → M2(c1) ×M2(c2) be a pmc immersion of an
oriented surface Σ and z = x+ iy a conformal parameter. Then

Θ(z) =
(

2|H|2〈σ(∂z, ∂z), H〉+ c1〈R0(P1φz, P1H)H,φz〉

− c2〈R0(P2φz, P2H)H,φz〉
)

dz ⊗ dz
(4.9)

is a holomorphic quadratic differential on Σ.

In the case c1 = c2 = ±1, the holomorphic differential given by (4.9) is a
linear combination of the two holomorphic differentials in Proposition 4.7.

5 The general non-spherical case

Proposition 3.1 reveals that the ambient spaces considered above are plentiful
of pmc immersions in general: any cmc immersion into a totally umbilical
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cmc hypersurface is pmc. Nonetheless, this description does not give all pmc
surfaces in general, as examples in complex space forms or in product manifolds
M2(ε)×M2(ε) below show. On account of the fact that listing all pmc surfaces
is not reasonable, instead local classification results have been considered so far,
based either on reducing the codimension to the cmc case (space form cases and
Mn(c)×R), or on associating some analytic data with the immersion (complex
hyperbolic and projective spaces, see also Hoffman’s examples [Hof73, Theorem
5.1] in R4 at the end of Section 5.1). We will present as well results with extra
conditions on the immersion.

5.1 PMC surfaces in space forms

Chen [Che73] classified pmc surfaces in Euclidean space R4, and Yau [Yau74]
gave an independent classification in an arbitrary space form M4(c).

Theorem 5.1 ([Yau74, Theorem 4]). Let φ : Σ→ M4(c) be a pmc immersion
of an oriented surface Σ. Then Σ is contained in a totally umbilical hypersurface
of M4(c) as a cmc surface.

Remark 5.2. Although Theorem 5.1 is stated in dimension four, Chen and Yau
proved this result in arbitrary dimension, showing, more precisely that either φ
is minimal in a totally umbilical hypersurface of Mn(c), or φ is a cmc immersion
into a totally umbilical three-dimensional submanifold of Mn(c).

Proof. The idea is to use both differentials defined by (4.1) to show the existence
of a parallel normal section ξ such that Aξ = λ Id, and the same argument as
in the proof of Theorem 4.3 will ensure that Σ satisfies the desired conditions
To illustrate this, let us assume c = 0.

If Θ = 0, then AH = |H|2 Id and we can reason as in the proof of Theo-

rem 4.3. Likewise, if Θ̃ = 0, then AH̃ = λ Id with λ = 〈H, H̃〉 = 0 so p 7→ H̃p

is constant in R4 since V (H̃) = −AH̃V + ∇⊥V H̃ = 0 for all V ∈ X(Σ). The

function f : Σ→ R defined as f(p) = 〈φ(p)−φ(p0), H̃〉 for some p0 ∈ Σ satisfies

V (f) = 〈V, H̃〉+ 〈φ(p)− φ(p0),∇V H̃〉 = 0, for all V ∈ X(Σ),

so f is constant and φ(Σ) lies in a hyperplane of R4. Moreover, φ(Σ) has
constant mean curvature in this hyperplane

Hence we can assume that Θ and Θ̃ are not identically zero. It is not hard
to prove that the imaginary part of the meromorphic function g : Σ → C,
g(p) = Θ(p)/Θ̃(p), coincides with the commutator [AH , AH̃ ], which is zero by
the Ricci equation (2.3). Hence the imaginary part of g identically vanishes,
whence g ≡ tan(α) for some constant |α| < π

2 . The normal vector field ξ =

cos(α)H − sin(α)H̃ is parallel and satisfies Aξ = cosα|H|2 Id, so we can again
continue as in the proof of Theorem 4.3, considering the function f(p) = ξp +
cosα|H|2φ(p).
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For illustrative purposes, let us consider Lawson’s minimal examples [Law70,
Theorem 2] in S3 as a pmc surfaces in Rn, n ≥ 4. Hence, any compact orientable
surface of genus g can be embedded as a pmc surface in Rn, n ≥ 4. Hoffman gave
more examples of pmc surfaces in the space forms not lying in any hypersphere
as minimal surfaces [Hof73, Theorem 5.1]. More particularly, he showed that,
given any holomorphic function ϕ : U → C on an open domain U ⊆ C, and
constants H > 0 and α ∈ R there exists a pmc immersion in M4(c) such that

the length of the mean curvature vector is H, Θ = ϕ(dz)2 and Θ̃ = αϕ(dz)2.

5.2 PMC surfaces in S3 × R and H3 × R
Alencar, Do Carmo and Tribuzy [ACT10] studied pmc immersions in Mn(c)×
R, c 6= 0, for arbitrary n. They realized that the quadratic differential (4.8)
introduced by de Lira and Vitório [dLV10] is holomorphic for any n ≥ 2 (for
n = 2 it is actually the Abresch-Rosenberg differential [AR05]). They showed
that for a pmc immersion in Mn(c) × R either H is an umbilical direction,
i.e., AH = |H|2Id (so φ(Σ) lies in a slice Mn(c) × R, see items (i) and (ii) in
Theorem 5.3), or one can reduce the codimension to three.

Theorem 5.3 ([ACT10, Theorem 1]). Let φ : Σ → Mn(c) × R be a pmc
immersion of an oriented surface Σ. Then, one of the following assertions
holds:

(i) φ(Σ) is minimal in a totally umbilical hypersurface of Mn(c)×{t0}, t0 ∈ R.

(ii) φ(Σ) is cmc in a three-dimensional totally umbilical submanifold of Mn(c)×
{t0}, t0 ∈ R.

(iii) If n ≥ 4, then φ(Σ) lies in a totally geodesic M4(c)× R.

Remark 5.4. Notice that Theorem 5.3 does not provide a classification of pmc
surfaces in M3(c) × R or in M4(c) × R. Therefore the final classification of
pmc surfaces in Mn(c) × R depends upon the cases n = 3 and n = 4, which
remain open. Moreover, pmc spheres have only been classified for n = 3 (cf.
Theorem 4.12), though it is proven that they must be rotationally invariant for
n = 4 [ACT10, Theorem 2].

Mendonça and Tojeiro have also discussed pmc immersions in Mn(c) × R
in [MT14]. They obtained more information adding an extra hypothesis. They
show that, if φ(Σ) is not contained in a slice (cases (i) and (ii) in Theorem 5.3)
and Θ ≡ 0 then φ(Σ) is rotationally invariant in the sense exposed in Re-
mark 4.14. In particular, this condition is fulfilled if either Σ is diffeomorphic
to a sphere or Σ is a complete non-flat surface in Hn × R with non-negative
Gaussian curvature (cp. Remarks 4.4 and 4.10).

In order to prove the latter assertion, observe that if Θ 6≡ 0, then ∆ log |Θ| =
4K ≥ 0, i.e., log |Θ| is a superharmonic function bounded from below in Σ. Since
K ≥ 0 it follows that Σ has quadratic area growth, so log |Θ| must be constant
in view of [CY75, Corollary 1]. From the fact that |Θ| is constant, it follows
that K is also constantly zero.
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This idea was previously developed by Hoffman [Hof73] for pmc surfaces in
space forms. It is worth pointing out that Hoffman was able to deal with the
cases K ≥ 0 and K ≤ 0 in both S4 and H4, by finding suitable superharmonic
functions bounded from below and reducing to the constant Gauss curvature
case. On the contrary, Alencar, do Carmo and Tribuzy only treated the case
K ≥ 0 in Hn(c)× R. This result has been extended to Sn(c)× R by Fetcu and
Rosenberg [FR11, Theorem 1.2] by using a Simon-type equation.

5.3 PMC surfaces in CH2 and CP2

The classification of pmc surfaces in CP2 and CH2 appeared first in a paper
of Kenmotsu and Zhou [KZ00]. Unfortunately, their result depended upon the
structure equations for pmc surfaces given by Ogata [Oga95], which turned out
to be incorrect (see [KO15] for the correction). However, Hirakawa [Hir06, The-
orem 2.1], who spotted Ogata’s mistake, gave a partial solution to the problem,
recently completed by Kenmotsu [Ken16] in a non-explicit way.

Given an immersion of an oriented surface Σ in CM2(c) (or more generally,
in any complex manifold), the Kähler function C : Σ → [−1, 1] is defined by
C(p) = 〈Je1, e2〉, where {e1, e2} is an oriented orthonormal basis of TpΣ and
J is the complex structure (some authors define θ = arccosC as the Kähler
angle of the immersion instead). The points p ∈ Σ where C2(p) = 1 are called
complex, that is, they are the points where TpΣ is complex. Likewise, the points
p where C(p) = 0 are the points where TpΣ is totally real. In particular, if C is
constant zero, then the immersion is Lagrangian.

The main goal of [Hir06] was to study pmc surfaces with constant Gauss
curvature (in particular, constant Kähler angle pmc surfaces, see the following
paragraph), but Hirakawa also dealt with pmc surfaces satisfying a technical

condition in Ogata’s equation, namely a = ā, where a = 〈J∇C,H + iH̃〉 (see
Remark 5.6). This condition implies geometrically the existence of special co-
ordinates in Σ such that the C only depends on one coordinate, see [KO15].
He also pointed out some examples that were missing in Kenmotsu and Zhou’s
paper. Hirakawa found, among others, pmc spheres and Delaunay cmc surfaces
in R3 ⊂ R4, and gave four different types of solutions in C2, one type in CP2 and
CH2 with H2 ≥ 2, and two special types in CH2 for H2 = 4/3. Kenmotsu de-
scribed the rest of pmc examples in CP2 and CH2, that is, those with a 6= ā (in
particular with non-constant Kähler angle) in terms of a real-valued harmonic
function and five real constants (cp. [Hof73, Theorem 5.1]).

Theorem 5.5 ([Hir06, Theorem 2.1] and [Ken16]). Let Σ be a pmc surface

immersed in CM2(c) and a : Σ → C given by a = 〈J∇C,H + iH̃〉, where ∇C
is the gradient of the Kähler function and H̃ is defined in Lemma 2.4.

1. If a is a real-valued function, then one of the following assertions holds:

(i) |H|2 ≥ −c/2 and the immersion is Lagrangian, or

(ii) |H|2 = −c/3 and either the Kähler function is constant 1/3 or it is
a special solution (see item (iii)-2 in [Hir06, Theorem 2.1]).
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2. If a 6= ā, then the solution depends on one real-valued harmonic function
and five real constants.

Remark 5.6. Our definition of a differs from the definition in [Hir06, Ken16] in
a multiplicative real function plus a constant term − 1

2 |H|, which is irrelevant
for the statement. Actually,

a =
1

2|H|(1− C2)
〈∇C, J(H − iH̃)〉 − 1

2
|H|,

which is defined in the open dense set Σ \ {p ∈ Σ : C(p)2 = 1} (observe that
the interior of the set {p ∈ Σ : C(p)2 = 1} is empty since otherwise the interior
will be a complex surface, hence minimal, and we are supposing that Σ is pmc).

Remark 5.7. Among the solutions given by Theorem 5.5, the following are those
with constant Gauss curvature (see [Hir06, Theorem 1.1]):

• Either K = −H2/2 and Σ ⊂ CM2(−3|H|2) is (an open piece of):

(i) the slant surface found by Chen in [Che98], or

(ii) one of the examples described in [Hir06, Examples, p. 230].

• Or K = 0 and the immersion is Lagrangian and Σ is (an open piece of):

(i) the product of two circles in CP2(c), c > 0, [DT95, Theorem 2], or

(ii) a plane, a cylinder, or a product of two circles in CH2(c), c < 0 with
|H|2 ≥ −c/2, [Hir04, Theorem 1].

In Theorem 5.5 we omitted the case of C2 on purpose. Nevertheless, Hoff-
man [Hof73, Proposition 3.4] proved that a pmc flat surface in C2 is part of a
cylinder or a product of two circles (see also [Che90, Theorem 7.1]). Hirakawa
also studied pmc surfaces with constant Gauss curvature in C2 (see items (2)-(b)
and (3) in [Hir06, Theorem 1.1] and item (ii) in [Hir06, Theorem 2.1]).

5.4 PMC surfaces in S2 × S2 and H2 ×H2

The case M2(ε) ×M2(ε), ε2 = 1, is of different nature to the other cases we
have presented so far. The classification is still incomplete, being only known
under an extra assumption on the extrinsic normal curvature. This curvature is
defined in the same fashion as the normal curvature K⊥, but using the ambient
Riemannian curvature tensor R in Equation (2.2) rather than the curvature
tensor R⊥.

Theorem 5.8 ([TU12, Theorems 2 and 3]). Let φ : Σ → M2(ε) × M2(ε) be
a pmc immersion of an oriented surface Σ with vanishing extrinsic normal
curvature. Then φ is locally congruent to

1. a cmc surface in a totally geodesic M2(ε)×M1(ε), or

2. a specific example given in [TU12, Example 1 and Proposition 5].
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Moreover, if φ is Lagrangian (not necessarily with vanishing extrinsic normal
curvature), then φ(Σ) is an open set of the examples given in [TU12, Example 1].

Remark 5.9. Among the examples described in [TU12], there are pmc surfaces
not lying in a totally geodesic hypersurface of M2(ε)×M2(ε).

The proof, which will not be sketched here, heavily relies upon the complex
structure of M2(ε)×M2(ε), not only on the product structure as in other cases.
It is worth mentioning that there is also a local correspondence between pairs
of cmc immersions in M2(ε)×R and pmc immersions in M2(ε)×M2(ε) [TU12,
Theorem 1]. This relation provides a weak rigidity result for cmc surfaces in
M2(ε)×R. It is conjectured that the condition on the extrinsic normal curvature
can be dropped, but probably that problem needs a different approach. If this
conjecture were true, it would also imply a strong rigidity result for cmc surfaces
in S2 × R and H2 × R (cf. [TU12, Corollary 3]).
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Ködai Math. Sem. Rep. 15 (1963), 176–183.

77



[TU12] Torralbo, F., Urbano, F., Surfaces with parallel mean curvature vector
in S2×S2 and H2×H2, Trans. Amer. Math. Soc. 364 (2012), 785–813.

[VdV08] Van der Veken, J., Higher Order Parallel Surfaces in Bianchi–Cartan–
Vranceanu Spaces, Result. Math. 51 (2008), 339–359.

[Wal86] Wall, C. T. C., Geometric structures on compact complex analytic
surfaces, Topology 25 (1986), 119–153.

[Yau74] Yau, S. T., Submanifolds with constant mean curvature. I, Amer. J.
Math. 96 (1974), 346–366.

78



Section 2:THEORY OF SUBMANIFOLDS

Section Editor: Joeri Van der Veken

Homothetic motion and surfaces with pointwise 1-type Gauss map in E4
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motion in E4 and we give necessary and sufficient conditions for flat surface
M with flat normal bundle to have pointwise 1-type Gauss map. Also,
we show that flat surface M with flat normal bundle which have pointwise
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1 Introduction

A submanifold M of a Euclidean space Em is said to be of finite type if its
position vector x can be expressed as a finite sum of eigenvectors of the Laplacian
∆ of M , that is, x = x0 +x1 + ...+xk, where x0 is a constant map, x1, ..., xk are
non-constant maps such that ∆xi = λixi, λi ∈ R, i = 1, 2, ..., k. If λ1, λ2,...,λk
are all different, then M is said to be of k−type. This definition was similarly
extended to differentiable maps, in particular, to Gauss maps of submanifolds
[3].

If a submanifold M of a Euclidean space has 1-type Gauss map G, then G
satisfies ∆G = λ (G+ C) for some λ ∈ R and some constant vector C. Chen
and Piccinni made a general study on compact submanifolds of Euclidean spaces
with finite type Gauss map and they proved that a compact hypersurface M of
En+1 has 1-type Gauss map if and only if M is a hypersphere in En+1 [3].

Hovewer, the Laplacian of the Gauss map of some typical well known surfaces
such as a helicoid, a catenoid and a right cone in Euclidean 3-space E3 take a
some what different form, namely,

∆G = f (G+ C) (1.1)
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for some smooth function f on M and some constant vector C. A submanifold
M of a Euclidean space Em is said to have pointwise 1-type Gauss map if its
Gauss map satisfies (1) for some smooth function f on M and some constant
vector C. A submanifold with pointwise 1-type Gauss map is said to be of the
first kind if the vector C in (1) is zero vector. Otherwise, the pointwise 1-type
Gauss map is said to be of the second kind. A pointwise 1-type Gauss map
is called proper if the function f given by (1.1) is non-constant. Non-proper
pointwise 1-type Gauss map is just usual 1-type Gauss map.

Surfaces in Euclidean space with pointwise 1-type Gauss map were recently
studied in [4], [5], [6]. Also Dursun and Turgay in [7] gave all general rotational
surfaces in E4 with proper pointwise 1-type Gauss map of the first kind and
classified minimal rotational surfaces with proper pointwise 1-type Gauss map
of the second kind. Arslan et al. in [1] investigated rotational embedded surface
with pointwise 1-type Gauss map. Arslan at el. in [2] gave necessary and suffi-
cent conditions for Vranceanu rotation surface to have pointwise 1-type Gauss
map. Yoon in [8] showed that flat Vranceanu rotation surface with pointwise
1-type Gauss map is a Clifford torus.

In this paper, we determine a surface M by means of homothetic motion in
E4 and we give necessary and sufficient conditions for flat surface M with flat
normal bundle to have pointwise 1-type Gauss map. We show that flat surface
with flat normal bundle which has pointwise 1-type Gauss map of the first kind
is a Clifford Torus. Morever we obtain a characterization of minimal surface M
with pointwise 1-type Gauss map.

2 Preliminaries

Let M be an oriented n−dimensional submanifold in m−dimensional Euclidean
space Em. Let e1,...,en, en+1,...,em be an oriented local orthonormal frame in
Em such that e1,...,en are tangent to M and en+1,...,em normal to M. We use
the following convention on the ranges of indices: 1 ≤ i, j, k,...≤ n, n + 1 ≤
r, s, t,...≤ m, 1 ≤ A,B,C,...≤ m.

Let ∇̃ be the Levi-Civita connection of Em and ∇ the induced connection
on M . Let ωA be the dual-1 form of eA defined by ωA (eB) = δAB . Also, the
connection forms ωAB are defined by

deA =
∑
B

ωABeB , ωAB + ωBA = 0.

Then we have

∇̃ekei =

n∑
j=1

ωij (ek) ej +

m∑
r=n+1

hriker

and

∇̃ekes = −As(ek) +Dekes, Dekes =

m∑
r=n+1

ωsr (ek) er,

81



where D is the normal connection, hrik the coefficients of the second fundamental
form h and As the Weingarten map in the direction es.

For any real function f on M, the Laplacian of f is defined by

∆f = −
∑
i

(
∇̃ei∇̃eif − ∇̃∇ei

ei
f
)
. (2.1)

The mean curvature vector H and Gaussian curvature K are defined by

H =
1

n

∑
r,i

hriier (2.2)

and

K =

m∑
s=n+1

(hs11h
s
22 − hs12hs21) . (2.3)

Also normal curvature tensor RD of M in Em is given by

RD(ej , ek; er, es) =

n∑
i=1

(
hrikh

s
ij − hrijhsik

)
. (2.4)

Let us now define the Gauss map G of a submanifold M into G(n,m) in
∧nEm, where G(n,m) is the Grassmannian manifold consisting of all oriented
n−planes through the origin of Em and ∧nEm is the vector space obtained
by the exterior product of n vectors in Em. In a natural way, we can identify

∧nEm with some Euclidean space EN where N =

(
m
n

)
. The map G : M →

G(n,m) ⊂ EN defined by G(p) = (e1 ∧ ... ∧ en) (p) is called the Gauss map of
M, that is, a smooth map which carries a point p in M into the oriented n−plane
through the origin of Em obtained from parallel translation of the tangent space
of M at p in Em.

The Laplacian of the Gauss map G for an n−dimensional submanifold M of
Euclidean space Em was given by

Lemma 2.1. (See [3]) Let x : M → Em be an isometric immersion of an
oriented n-dimensional Riemannian manifold M into Em. Then the Laplacian
of the Gauss map G : M → G (n,m) ⊂ ∧nEm is given by

∆G = −n
∑
i

e1 ∧ ... ∧DeiH ∧ ... ∧ en (2.5)

+RD (ej , ek; er, es) e1 ∧ ... ∧ ek th
s ∧ ... ∧ ej th

r ∧ ... ∧ en + ‖h‖2G.
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3 Homothetic Motion and Surfaces
with Pointwise 1-Type Gauss Map

In this section, we define a surface by using the homothetic motion as follows:

f (t, s) = h(t)


cos t − sin t 0 0
sin t cos t 0 0

0 0 cos t − sin t
0 0 sin t cos t




α1(s)
α2(s)
α3(s)
α4(s)

+


C1 (t)
C2 (t)
C3 (t)
C4 (t)

 ,

(3.1)
where h(t) is the homothetic scale of the motion, C (t) = (C1 (t) , C2 (t) , C3 (t) , C4 (t))
is the translation vector and α (s) = (α1 (s) , α2 (s) , α3 (s) , α4 (s)) is a profile
curve. If we choose the profile curve α as α (s) = (u(s) cos s, 0, u(s) sin s, 0) and
the translation vector C (t) = ~0 in (3.1), we obtain the surface M as follows:

f (s, t) = (u(s)h(t) cos s cos t, u(s)h(t) cos s sin t, u(s)h(t) sin s cos t, u(s)h(t) sin s sin t)
(3.2)

Let M be a surface in E4 given by the parametrization (3.2). The tangent
vectors of f (s, t) can be easily computed as

~v1 =
∂f

∂t
= (A1B

′
1, A1B

′
2, A2B

′
1, A2B

′
2) ,

~v2 =
∂f

∂s
=
(
Ȧ1B1, Ȧ1B2, Ȧ2B1, Ȧ2B2

)
and a basis of the normal space of f (s, t) can be given as follows:

~v3 = (−A2B2, A2B1, A1B2,−A1B1) ,

~v4 =
(
−Ȧ2B

′
2, Ȧ2B

′
1, Ȧ1B

′
2,−Ȧ1B

′
1

)
,

where

A1 = u(s) cos s, A2 = u(s) sin s

B1 = h(t) cos t, B2 = h(t) sin t

and Ȧi = ∂Ai

∂s for i = 1, 2 and B′j =
∂Bj

∂t j = 1, 2. By using Gramm-Schmidth
orthonormalization, the orthonormal vectors of tangent and normal spaces of
M are obtained, respectively, by

e1 =
1
√
v11

~v1,

e2 =
1√

|v11 (v11v22 − v212)|
(v11~v2 − v12~v1)
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and

e3 =
1
√
v33

~v3,

e4 =
1√

|v33 (v33v44 − v234)|
(v33~v4 − v34~v3) ,

where

v11 = 〈~v1, ~v1〉 = u2 (s)
(
h2 (t) + (h′ (t))

2
)
,

v12 = 〈~v1, ~v2〉 = u (s) u̇ (s)h (t)h′ (t) ,

v22 = 〈~v2, ~v2〉 =
(
u2 (s) + (u̇ (s))

2
)
h2 (t) ,

v33 = 〈~v3, ~v3〉 = u2 (s)h2 (t) ,

v34 = 〈~v3, ~v4〉 = u (s) u̇ (s)h (t)h′ (t) ,

v44 = 〈~v4, ~v4〉 =
(
u2 (s) + (u̇ (s))

2
)(

h2 (t) + (h′ (t))
2
)
.

Hence, {e1, e2, e3, e4} is orthonormal moving frame on M. Then we have the
dual 1-forms as:

ω1 =
u̇hh′(

h2 + (h′)
2
) 1

2

ds+
u
(
h2 + (h′)

2
)

(
h2 + (h′)

2
) 1

2

dt

ω2 =
h
(
u2h2 + u2 (h′)

2
+ (u̇)

2
h2
) 1

2

(
h2 + (h′)

2
) 1

2

ds

By a direct computation we have components of the second fundamental form
and the connection forms as:

h311 = 0, h312 = − 1

W
1
2

, h322 = 2
u̇h′

W
(3.3)

h411 =

(
2 (h′)

2 − hh′′ + h2
)

(
h2 + (h′)

2
)
W

1
2

, (3.4)

h412 =
u̇h′

(
hh′′ − (h′)

2
)

(
h2 + (h′)

2
)
W

,

h422 =

(
2 (u̇)

2 − uü+ u2
)(

h2 + (h′)
2
)2
− (u̇)

2
(h′)

2 (
hh′′ + h2

)(
h2 + (h′)

2
)
W

3
2
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and

ω12 = −
u̇h
(

2 (h′)
2 − hh′′ + h2

)
u
(
h2 + (h′)

2
) 3

2

W
1
2

ω1

+
u2h′

(
h2 + (h′)

2
)2

+ (u̇)
2
h2h′

(
2 (h′)

2 − hh′′ + h2
)

uh
(
h2 + (h′)

2
) 3

2

W

ω2, (3.5)

ω34 =
u̇h

u
(
h2 + (h′)

2
) 1

2

W
1
2

ω1 +
h′
(
u2h2 + u2 (h′)

2 − (u̇)
2
h2
)

uh
(
h2 + (h′)

2
) 1

2

W

ω2,

where W = u2h2 + u2 (h′)
2

+ (u̇)
2
h2.

Proposition 3.1. Let M be the surface given by the parameterization (3.2).
The Gaussian curvature and the normal bundle curvature of M are given, re-
spectively, by

K =

(
2 (h′)

2 − hh′′ + h2
)(

2 (u̇)
2 − uü+ u2

)
−
(
h2 + (h′)

2
)(

u2 + (u̇)
2
)

W 2

(3.6)
and

RD =

(
2 (u̇)

2 − uü+ u2
)(

h2 + (h′)
2
)
−
(

2 (h′)
2 − hh′′ + h2

)(
u2 + (u̇)

2
)

W 2

(3.7)

Proof. By using (2.3), (2.4), (3.3) and (3.4), we obtain (3.6) and (3.7).

Corollary 3.2. Let M be the surface given by the parameterization (3.2). M
is a flat surface with flat normal bundle if and only if it is parameterized by

f(t, s) = a1a2e
k1t+k2s (cos s cos t, cos s sin t, sin s cos t, sin s sin t) (3.8)

or

f(t, s) =
c1c2√

|cos (2t+ b1)|
√
|cos (2s+ b2)|

(cos s cos t, cos s sin t, sin s cos t, sin s sin t)

(3.9)

Proof. Let M be a flat surface with flat normal bundle. Then both K = 0 and
RD = 0. From (3.6), we have

2 (h′)
2 − hh′′ + h2

h2 + (h′)
2 .

2 (u̇)
2 − uü+ u2

u2 + (u̇)
2 = 1 (3.10)
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and from (3.7), we get

2 (h′)
2 − hh′′ + h2

h2 + (h′)
2 =

2 (u̇)
2 − uü+ u2

u2 (s) + (u̇)
2 . (3.11)

By combining (3.10) and (3.11) and solving these differential equations we obtain

h(t) = a1e
k1t and u (s) = a2e

k2s

or
h(t) =

c1√
|cos (2t+ b1)|

and u (s) =
c2√

|cos (2s+ b2)|
,

where a1, a2, b1, b2, c1, c2, k1 and k2 are real constants.

Remark 3.3. The surface M given by the parameterization (3.2) can be consid-
ered as the tensor product surface of two Euclidean planar curves, that is, let
α : R→ R2, α(s) = (α1(s), α2(s)) and β : R→ R2, β(t) = (β1(t), β2(t)) be two
Euclidean planar curves. The tensor product surface f (t, s) is defined by

f = α⊗ β : R2 → R4,

f (t, s) = (α1(s)β1(t), α1(s)β2(t), α2(s)β1(t), α2(s)β2(t)) .

In particular, for the curves α(s) = (u (s) cos s, u (s) sin s) and β(t) = (h(t) cos t, h(t) sin t)
the tensor product of them gives the surface M given by the parameterization
(3.2).

Theorem 3.4. (See [9]). A regular tensor product surface x(s, t) = α(s)⊗β(t)
of two curves α : R→ R2, α(s) = (u (s) cos s, u (s) sin s) or β : R→ R2, β(t) =
(h(t) cos t, h(t) sin t) is flat if and only if either

1. α or β is a straight line through the origin.
2. α and β are sinusoidal spirals, that is, the curves α and β are parame-

terized by

α(s) = c1 |cos ((a+ 1) s+ b1)|−
1

a+1 (cos s, sin s)

β(t) = c2

∣∣∣∣cos

((
1

a
+ 1

)
t+ b2

)∣∣∣∣− 1
1
a

+1

(cos t, sin t)

3. α and β are logarithmic spirals, that is, the curves α and β are parame-
terized by

α(s) = a1e
k1s (cos s, sin s) and β(t) = a2e

k2t (cos t, sin t)

with a1, a2, b1, b2, c1, c2, k1 and k2 are real constants, a1, a2, c1, c2 > 0 and a 6=
−1.
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Remark 3.5. In [8] Yoon studied Vranceanu surface parameterized by

f (s, t) = (u(s) cos s cos t, u(s) cos s sin t, u(s) sin s cos t, u(s) sin s sin t) .

He proved that flat Vranceanu surface in E4 has pointwise 1-type Gauss map
if and only if it is a Clifford torus. Also the normal bundle of flat Vranceanu
surface is flat, too.

Now we investigate flat surface M with flat normal bundle with pointwise
1-type Gauss map.

Theorem 3.6. Let M be flat surface with flat normal bundle given by the
parameterization (3.2). Then M has pointwise 1-type Gauss map if and only if
either

1. M is a Clifford torus, that is, the product of two plane circles with same
radius

2. It is the product of two logarithmic spirals which is parameterized by

f(t, s) = ek(t±s) (cos s cos t, cos s sin t, sin s cos t, sin s sin t)

where k is non zero real constant.

Proof. Firstly, we assume that the flat surface M with flat normal bundle given
by the parameterization (3.8) has pointwise 1-type Gauss map. If necessary, by
an appropriate homothetic transformation we may assume that a1 = a2 = 1.
Then we have h(t) = ek1t and u (s) = ek2s. By using (3.3), (3.4) and (3.5) we
have components of the second fundamental form and the connection forms as:

h311 = 0, h312 = −α (s, t) , h322 = aα (s, t)

h411 = α (s, t) , h412 = 0, h422 = α (s, t)

and

ω12 = bα (s, t)ω1 + cα (s, t)ω2, ω13 = −α (s, t)ω2, ω14 = α (s, t)ω1

ω23 = −α (s, t)ω1 + aα (s, t)ω2 ω24 = α (s, t)ω2, ω34 = −bα (s, t)ω1 + dα (s, t)ω2,

By covariant differentiation with respect to e1 and e2 a straightforward calcu-
lation gives:

∇̃e1e1 = bαe2 + αe4, (3.12)

∇̃e2e1 = cαe2 − αe3,
∇̃e1e2 = −bαe1 − αe3,
∇̃e2e2 = −cαe1 + aαe3 + αe4,

∇̃e1e3 = αe2 − bαe4,
∇̃e2e3 = αe1 − aαe2 + dαe4

∇̃e1e4 = −αe1 + bαe3,

∇̃e2e4 = −αe2 − dαe3,
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where

α (s, t) =
1

u(s)h(t) (1 + k21 + k22)
1
2

, a =
2k1k2

(1 + k21 + k22)
1
2

, b = − k2

(1 + k21)
1
2

,

c =
k1
(
1 + k21 + k22

) 1
2

(1 + k21)
1
2

, d =
k1
(
1 + k21 − k22

)
(1 + k21)

1
2 (1 + k21 + k22)

1
2

(3.13)

By using (2.1) and (3.12) and after straight-forward computations, the Lapla-
cian ∆G of the Gauss map G can be expressed as

∆G =
(
4 + a2

)
α2e1 ∧ e2 + (c+ d)α2e1 ∧ e3 − (2b+ ad)α2e1 ∧ e4

+ (2b− ac)α2e2 ∧ e3 − (c+ d)α2e2 ∧ e4. (3.14)

We suppose that the flat surface M with flat normal bundle has pointwise 1-type
Gauss map. From (1.1) and (3.14), we get(

4 + a2
)
α2 = f + f 〈C, e1 ∧ e2〉 (3.15)

(c+ d)α2 = f 〈C, e1 ∧ e3〉 (3.16)

(−2b− ad)α2 = f 〈C, e1 ∧ e4〉 (3.17)

(2b− ac)α2 = f 〈C, e2 ∧ e3〉 (3.18)

− (c+ d)α2 = f 〈C, e2 ∧ e4〉 (3.19)

Then, we have
〈C, e3 ∧ e4〉 = 0 (3.20)

By differentiating (3.20) with respect to e1, we get

〈C, e1 ∧ e3〉+ 〈C, e2 ∧ e4〉 = 0 (3.21)

When we take the derivative of (3.20) with respect to e2, we have

〈C, e1 ∧ e4〉+ 〈C, e2 ∧ e3〉 − a 〈C, e2 ∧ e4〉 = 0 (3.22)

If we evaluate the derivative of (3.22) with respect to e2 again, we get

2 〈C, e1 ∧ e2〉 = − (c+ d) 〈C, e1 ∧ e3〉+ ac 〈C, e1 ∧ e4〉 (3.23)

+ad 〈C, e2 ∧ e3〉+ (c+ d) 〈C, e2 ∧ e4〉

By using (3.15), (3.16), (3.17), (3.18), (3.19), (3.21) and (3.23) we then have

f =
(

4 + a2 + (c+ d)
2

+ abc+ a2cd− abd
)
α2 = Aα2 (3.24)

that is, a smooth function f depends on s and t. Differentiating (3.24) with
respect to e1, we have

e1(f) = −2cAα3. (3.25)

88



On the other hand, by differentiating (3.19) with respect to e1 and by using
(3.12), (3.15), (3.17), (3.18), (3.19), (3.24) and (3.25) we obtain

4b2 + 2abd− 2abc− a2cd− (c+ d)
2

= 0. (3.26)

By substituting (3.13) into (3.26) we get(
k21 − k22

) (
1 + k21 + k22 + k21k

2
2

)
= 0 (3.27)

and from (3.27) we obtain that k1 = ±k2. In particular, if we take as k1 = k2 =
0, we obtain Clifford torus. For the other cases, we obtain the tensor product
surface of two logarithmic spirals.

Conversely, we assume that k21 = k22. In that case the flat surface M with
flat normal bundle is given by the parametrization (3.8) has pointwise 1-type
Gauss map for the function

f (s, t) =
(

4 + a2 + (c+ d)
2

+ abc+ a2cd− abd
)
α2 = Aα2

and the constant vector

C =
1

A

( (
4 + a2 −A

)
e1 ∧ e2 + (c+ d) e1 ∧ e3 − (2b+ ad) e1 ∧ e4

)
+

1

A

(
(2b− ac) e2 ∧ e3 − (c+ d) e2 ∧ e4

)
.

Now, we assume that the flat surface M with flat normal bundle is given by the
parametrization (3.9). We research whether this surface has pointwise 1-type
Gauss map. We can write as

u(s) = c1 (ε cos (2s))
− 1

2 ,

where if cos (2s) > 0 ( resp. < 0), then ε = 1 (resp. = −1). Analogously, we
can write as

h(t) = c2 (δ cos (2t))
− 1

2 ,

where if cos (2t) > 0 (< 0, respectively) then δ = 1(−1,respectively). By using
(3.3), (3.4) and (3.5) we have components of the second fundamental form and
the connection forms as:

h311 = 0, h312 = −λ (s, t) , h322 = κ(s, t)λ (s, t)

h411 = −λ (s, t) , h412 = κ(s, t)λ (s, t) , h422 = −
(
1 + κ2(s, t)

)
λ (s, t)

and

ω12 = τ (s, t)λ (s, t)ω1 + β (s, t)λ2 (s, t)ω2

ω34 = τ (s, t)λ (s, t)ω1 + β (s, t)λ2 (s, t)ω2.

89



By covariant differentiation with respect to e1 and e2, we get

∇̃e1e1 = τλe2 − λe4, (3.28)

∇̃e2e1 = βλ2e2 − λe3 + κλe4,
∇̃e1e2 = −τλe1 − λe3 + κλe4,
∇̃e2e2 = −βλ2e1 + κλe3 −

(
1 + κ2

)
λe4,

∇̃e1e3 = λe2 + τλe4,

∇̃e2e3 = λe1 − κλe2 + βλ2e4

∇̃e1e4 = λe1 − κλe2 − τλe3,
∇̃e2e4 = −κλe1 +

(
1 + κ2

)
λe2 − βλ2e3,

where

κ(s, t) =
2 (ε sin (2s)) (δ sin (2t))(

1− (ε sin (2s))
2

(δ sin (2t))
2
) 1

2

,

τ (s, t) =
(ε sin (2s)) (δ cos (2t))

(ε cos (2s))
,

β (s, t) =
c1c2 (δ sin (2t))

(
(ε cos (2s))

2 − (ε sin (2s))
2

(δ cos (2t))
2
)

(ε cos (2s))
5
2 (δ cos (2t))

5
2

,

λ (s, t) =
1

W
1
2

=
(ε cos (2s))

3
2 (δ cos (2t))

3
2

c1c2

(
1− (ε sin (2s))

2
(δ sin (2t))

2
) 1

2

.

By using (2.1), straight-forward computation the Laplacian ∆G of the Gauss
map G can be expressed as

∆G =
(
4 + 5κ2 + κ4

)
λ2e1 ∧ e2 +

(
−e2 (κλ)− β

(
2 + κ2

)
λ3
)
e1 ∧ e3

+
(
e2
((

2 + κ2
)
λ
)
− βκλ3

)
e1 ∧ e4 (3.29)

+
(
e1 (κλ) + τ

(
2 + κ2

)
λ2
)
e2 ∧ e3 +

(
−e1

((
2 + κ2

)
λ
)

+ τκλ2
)
e2 ∧ e4.

We suppose that the flat surface M with flat normal bundle has pointwise 1-type
Gauss map. From (1.1) and (3.29), we get(

4 + 5κ2 + κ4
)
λ2 = f + f 〈C, e1 ∧ e2〉 , (3.30)

−e2 (κλ)− β
(
2 + κ2

)
λ3 = f 〈C, e1 ∧ e3〉 , (3.31)

e2
((

2 + κ2
)
λ
)
− βκλ3 = f 〈C, e1 ∧ e4〉 , (3.32)

e1 (κλ) + τ
(
2 + κ2

)
λ2 = f 〈C, e2 ∧ e3〉 , (3.33)

−e1
((

2 + κ2
)
λ
)

+ τκλ2 = f 〈C, e2 ∧ e4〉 . (3.34)

Then we have
〈C, e3 ∧ e4〉 = 0. (3.35)
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By differentiating (3.35) with respect to e1, we get

〈C, e2 ∧ e4〉 − 〈C, e1 ∧ e3〉+ κ 〈C, e2 ∧ e3〉 = 0. (3.36)

By considering together with (3.31), (3.33), (3.34) and (3.36), we have

−e1
((

2 + κ2
)
λ
)

+ τκλ2 + κ
(
e1 (κλ) + τ

(
2 + κ2

)
λ2
)

+e2 (κλ) + β
(
2 + κ2

)
λ3 = 0.

(3.37)

On the other hand, after some long computations we have

e1 (κ) =
4 (ε sin (2s)) (ε cos (2s))

1
2 (δ cos (2t))

5
2

c1c2

(
1− (ε sin (2s))

2
(δ sin (2t))

2
) 3

2

, (3.38)

e2 (κ) =
4λ (ε cos (2s)) (δ sin (2t)) (δ cos (2t))

−1(
1− (ε sin (2s))

2
(δ sin (2t))

2
) 3

2

− 4λ (ε sin (2s))
2

(ε cos (2s))
−1

(δ sin (2t)) (δ cos (2t))(
1− (ε sin (2s))

2
(δ sin (2t))

2
) 3

2

,

(3.39)

e1(λ) =
((ε cos(2s))2(δ sin(2t))(δ cos(2t))2)

c21c
2
2(1− (ε sin(2s))2(δ sin(2t))2)

3
2

(
− 3 + 2(ε sin(2s))2

+ (ε sin(2s))2(δ sin(2t))2
) (3.40)

and

e2(λ) =ζ
(

(−3 + 2(δ sin(2t))2 + (ε sin(2s))2(δ sin(2t))2)

− (δ sin(2t))2(−3 + 2(ε sin(2s))2 + (ε sin(2s))2(δ sin(2t))2)
)
,

ζ =
λ(ε sin(2s)(ε cos(2s))

1
2 (δ cos(2t))

1
2 )

c1c2(1− (ε sin(2s))2(δ sin(2t))2)
3
2

·

(3.41)

By combining (3.38), (3.39), (3.40) and (3.41) with (3.37), we obtain that this
equation is not satisfied. So, there is no flat surface with flat normal bundle
given by the parameterization (3.9) which has pointwise 1-type Gauss map.

Corollary 3.7. Let M be flat surface with flat normal bundle given by the
parameterization (3.2). M has pointwise 1-type Gauss map of the first kind if
and only if it is a Clifford Torus.

Proof. From Theorem 3.6 the flat surface M with flat normal bundle is given
by the parameterization (3.2) has pointwise 1-type Gauss map for the function

f (s, t) = Aα2
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and the constant vector

C =
1

A

(
(4 + a2 −A)e1 ∧ e2 + (c+ d)e1 ∧ e3 − (2b+ ad)e1 ∧ e4

)
+

1

A

(
(2b− ac)e2 ∧ e3 − (c+ d)e2 ∧ e4

)
with k21 = k22, where

A =
(

4 + a2 + (c+ d)
2

+ abc+ a2cd− abd
)
.

We assume that the surface M has pointwise 1-type Gauss map of the first
kind. Then, we obtain C = 0, that is, all components of C is zero. Then, we
get k1 = k2 = 0. This completes the proof.

Theorem 3.8. An oriented minimal surface M in the Euclidean space E4 has
pointwise 1-type Gauss map of the first kind if and only if M has a flat normal
bundle [6].

Theorem 3.9. There exists no minimal surface given by the parameterization
(3.2) with pointwise 1-type Gauss map of the first kind.

Proof. We suppose that the surface M given by the parameterization (3.2) is
minimal surface with pointwise 1-type Gauss map of the first kind. From Theo-
rem 3.8 we have RD = 0. Since the surface M is minimal and its normal bundle
is flat then (2.2) and (2.4) imply, respectively

h311 + h322 = 0 and h411 + h422 = 0 (3.42)

h312
(
h411 − h422

)
+ h412

(
h322 − h311

)
= 0. (3.43)

By combining (3.3), (3.4), (3.42) and (3.43) we have

h322 = h411 = h422 = 0. (3.44)

The equation (3.44) conflicts with the regularity of the surface.

Theorem 3.10. (See [6]). A non-planar minimal oriented surface M in the
Euclidean space E4 has pointwise 1-type Gauss map of the second kind if and
only if, with respect to some suitable local orthonormal frame {e1, e2, e3, e4} on
M , the shape operators of M are given by

A3 =

(
ρ 0
0 −ρ

)
and A4 =

(
0 ερ
ερ 0

)
,

where ε = ±1 and ρ is a smooth non-zero function on M.

Theorem 3.11. Let M be minimal surface given by the parameterization (3.2).
Then M has pointwise 1-type Gauss map of the second kind if and only if it is
parametrized by

f(t, s) =
bd√

|cos (2s+ c)|
(cos s cos t, cos s sin t, sin s cos t, sin s sin t)
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or

f(t, s) =
bd√

|cos (2t+ c)|
(cos s cos t, cos s sin t, sin s cos t, sin s sin t)

where b, d and c are real constants.

Proof. We assume that M is a minimal surface with pointwise 1-type Gauss
map of second kind. In that case the mean curvature of M is zero and we have

h322 = 0 (3.45)

and
h411 + h422 = 0. (3.46)

By using (2.5), the Laplacian ∆G of the Gauss map G is written as

∆G = ‖h‖2G+ 2RDe3 ∧ e4, (3.47)

where RD 6= 0. In the opposite case, M has pointwise 1-type Gauss map of the
first kind. By using (2.4), (3.45) and (3.46) we get

RD = 2h312h
4
11 6= 0. (3.48)

Since M has pointwise 1-type Gauss map of the second kind, from (1.1) and
(3.47) we have

‖h‖2G+ 2RDe3 ∧ e4 = fG+ fC (3.49)

for some smooth non-zero function f on M and some constant vector C. Since
the vector C is a linear combination of e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4,
e3 ∧ e4. From (3.49) we get

‖h‖2 = f (1 + 〈C, e1 ∧ e2〉) (3.50)

2RD = f 〈C, e3 ∧ e4〉 6= 0 (3.51)

and
〈C, e1 ∧ e3〉 = 〈C, e1 ∧ e4〉 = 〈C, e2 ∧ e3〉 = 〈C, e2 ∧ e4〉 = 0

Since h312 is not equal to zero on M , it follows that‖h‖ 6= 0 or 〈C, e1 ∧ e2〉 6= −1.
Differentiating 〈C, e1 ∧ e3〉 = 0 with respect to e1 and e2, we get

h312 〈C, e1 ∧ e2〉+ h411 〈C, e3 ∧ e4〉 = 0 (3.52)

and
h412 〈C, e3 ∧ e4〉 = 0, (3.53)

respectively. On the other hand, differentiating 〈C, e1 ∧ e4〉 = 0 with respect to
e1 and e2, we have

h412 〈C, e1 ∧ e2〉 = 0 (3.54)

and
h312 〈C, e3 ∧ e4〉+ h411 〈C, e1 ∧ e2〉 = 0, (3.55)
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respectively. The equation (3.54) implies that h412 = 0 or 〈C, e1 ∧ e2〉 = 0. If
〈C, e1 ∧ e2〉 = 0 then from (3.55) we get h312 〈C, e3 ∧ e4〉 = 0. h312 is not equal
to zero on M. Hence we have 〈C, e3 ∧ e4〉 = 0 and (3.51) implies that RD = 0.
This is a contradiction. So 〈C, e1 ∧ e2〉 6= 0 and h412 = 0. By using (3.52) and
(3.55) we obtain (

h312
)2

=
(
h411
)2
. (3.56)

From (3.45) and (3.3) we get u̇ = 0 or h′ = 0. Firstly we assume that h′ 6= 0.
Then we have u = d =constant. By considering together with (3.3), (3.4), (3.46)
and (3.56) we obtain

h(t) =
c√

|cos (2t+ b)|
·

Now we assume that u̇ 6= 0. Then we have h = d = constant. By using (3.3) and
(3.4) with h = d, we can see that (3.56) is satisfied directly. So, if we consider
(3.4), (3.46) for h = d we obtain

u(s) =
c√

|cos (2s+ b)|
,

where b, c and d are real constants.
If we consider as both u̇ = 0 and h′ = 0, then the surface M is not minimal

surface.
On the other hand by using (3.47), (3.48), (3.50), (3.51), (3.55) and (3.56)

(or see the proof of Theorem 5 in [6]) we can find the function f and the constant
vector C as

f(s) = 8
(
h312
)2

(3.57)

and

C = −e1 ∧ e2
2

+ ε
e3 ∧ e4

2
· (3.58)

Hence the minimal surface M has pointwise 1-type Gauss map of the second
kind for the function f and the constant vector C given by (3.57) and (3.58),
respectively. This completes the proof.
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Ferdağ Kahraman Aksoyak: Ahi Evran University, Division of Elementary Mathematics
Education, Kirsehir, Turkey, e-mail:ferdag.aksoyak@ahievran.edu.tr,
Yusuf Yaylı: Ankara University, Department of Mathematics, Ankara, Turkey, e-
mail:yayli@science.ankara.edu.tr

Proceedings Book of International Work-
shop on Theory of Submanifolds (Vol-
ume: 1 (2016)) June 2–4, 2016, Istanbul,
Turkey. Editors: Nurettin Cenk Turgay,
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1 Introduction

The Gauss map G of a submanifold M into G(n,m) in ∧nEms , where G(n,m)
is the Grassmannian manifold consisting of all oriented n−planes through the
origin of Ems and ∧nEms is the vector space obtained by the exterior product
of n vectors in Ems is a smooth map which carries a point p in M into the
oriented n−plane in Ems obtained from parallel translation of the tangent space
of M at p in Ems . Since the vector space ∧nEms identify with a semi-Euclidean

space ENt for some positive integer t, where N =

(
m
n

)
, the Gauss map is

defined by G : M → G(n,m) ⊂ ENt , G(p) = (e1 ∧ ... ∧ en) (p). The notion
of submanifolds with finite type Gauss map was introduced by B. Y.Chen and
P.Piccinni in 1987 [6] and after then many works were done about this topic,
especially 1-type Gauss map and 2- type Gauss map.

If a submanifold M of a Euclidean space or pseudo-Euclidean space has
1-type Gauss map G, then G satisfies

∆G = λ (G+ C)
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for some λ ∈ R and some constant vector C.
On the other hand the Laplacian of the Gauss map of some typical well-

known surfaces satisfies the form

∆G = f (G+ C) (1.1)

for some smooth function f on M and some constant vector C. A submanifold
of a Euclidean space or pseudo-Euclidean space is said to have pointwise 1-type
Gauss map, if its Gauss map satisfies (1.1) for some smooth function f on M
and some constant vector C. If the vector C in (1.1) is zero, a submanifold with
pointwise 1-type Gauss map is said to be of the first kind, otherwise it is said
to be of the second kind.

A lot of papers were recently published about rotational surfaces with point-
wise 1-type Gauss map in four dimensional Euclidean and pseudo Euclidean
space in [1],[3],[4], [8], [9] [11].Timelike and spacelike rotational surfaces of el-
liptic, hyperbolic and parabolic types in Minkowski space E4

1 with pointwise
1-type Gauss map were studied in [5, 7]. Aksoyak and Yaylı in [2] studied boost
invariant surfaces (rotational surfaces of hyperbolic type) with pointwise 1-type
Gauss map in Minkowski space E4

1. They gave a characterization for flat boost
invariant surfaces with pointwise 1-type Gauss map. Also they obtain some
results for boost invariant marginally trapped surfaces with pointwise 1-type
Gauss map. Ganchev and Milousheva in [10] defined three types of rotational
surfaces with two dimensional axis rotational surfaces of elliptic, hyperbolic
and parabolic type in pseudo Euclidean space E4

2. They classify all rotational
marginally trapped surfaces of elliptic, hyperbolic and parabolic type, respec-
tively.

In this paper, we study rotational surfaces of elliptic, hyperbolic and parabolic
type with pointwise 1-type Gauss map which have spacelike profile curve in four
dimensional pseudo Euclidean space and give all classifications of flat rotational
surfaces of elliptic, hyperbolic and parabolic type with pointwise 1-type Gauss
map.

2 Preliminaries

Let Ems be the m−dimensional pseudo-Euclidean space with signature (s,m−s).
Then the metric tensor g in Ems has the form

g =

m−s∑
i=1

(dxi)
2 −

m∑
i=m−s+1

(dxi)
2

where (x1, . . . , xm) is a standard rectangular coordinate system in Ems .
A vector v is called spacelike (resp., timelike) if 〈v, v〉 > 0 (resp., 〈v, v〉 < 0).

Avector v is called lightlike if it v 6= 0 and 〈v, v〉 = 0, where 〈, 〉 is indefinite
inner scalar product with respect to g.
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LetM be an n−dimensional pseudo-Riemannian submanifold of am−dimen-
sional pseudo-Euclidean space Ems and denote by ∇̃ and ∇ Levi-Civita con-
nections of Ems and M , respectively. We choose local orthonormal frame
{e1, . . . , en, en+1, . . . , em} on M with εA = 〈eA, eA〉 = ±1 such that e1, . . . en
are tangent to M and en+1, . . . , em are normal to M. We use the following con-
vention on the ranges of indices: 1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ r, s, t, . . . ≤ m,
1 ≤ A,B,C, . . . ≤ m.

Denote by ωA the dual-1 form of eA such that ωA (X) = 〈eA, X〉 and ωAB
the connection forms defined by

deA =
∑
B

εBωABeB , ωAB + ωBA = 0.

Then the formulas of Gauss and Weingarten are given by

∇̃ekei =

n∑
j=1

εjωij (ek) ej +

m∑
r=n+1

εrh
r
iker

and

∇̃ekes = −
n∑
j=1

εjh
s
kjej +Dekes, Dekes =

m∑
r=n+1

εrωsr (ek) er,

where D is the normal connection, hrik the coefficients of the second fundamental
form h.

For any real function f on M, the Laplacian operator of M with respect to
induced metric is given by

∆f = −εi
∑
i

(
∇̃ei∇̃eif − ∇̃∇ei

eif
)
. (2.1)

The mean curvature vector H and the Gaussian curvature Kof M in Ems are
defined by

H =
1

n

m∑
s=n+1

n∑
i=1

εiεsh
s
iies (2.2)

and

K =

m∑
s=n+1

εs (hs11h
s
22 − hs12hs21) , (2.3)

respectively. We recall that a surface M is called minimal if its mean curvature
vector vanishes identically, i.e. H = 0. If the mean curvature vector satisfies
DH = 0, then the surface M is said to have parallel mean curvature vector.
Also if Gaussian curvature of M vanishes identically, i.e. K = 0, the surface M
is called flat.
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3 Rotational Surfaces with Pointwise
1-Type Gauss Map in E4

2

In this section, we consider rotational surfaces of elliptic, hyperbolic and parabolic
type in four dimensional pseudo-Euclidean space E4

2 which are defined by Ganchev
and Milousheva in [10] and investigate these rotational surfaces with pointwise
1-type Gauss map.

We denote the standart orthonormal basis of E4
2 by {ε1, ε2, ε3, ε4} where ε1 =

(1, 0, 0, 0), ε2 = (0, 1, 0, 0), ε3 = (0, 0, 1, 0) and ε4 = (0, 0, 0, 1), and 〈ε1, ε1〉 =
〈ε2, ε2〉 = 1, 〈ε3, ε3〉 = 〈ε4, ε4〉 = −1.

3.1 Rotational surfaces of elliptic type with pointwise
1-type Gauss map in E4

2

In this subsection, first we consider the rotational surfaces of elliptic type with
harmonic Gauss map.Then, we give a characterization of the flat rotational
surfaces of elliptic type with pointwise 1-type Gauss map and obtain a relation-
ship for non-minimal these surfaces with parallel mean curvature vector and
pointwise 1-type Gauss map of the first kind.

Rotational surface of elliptic type M1 is defined by

ϕ (t, s) =


1 0 0 0
0 1 0 0
0 0 cos t − sin t
0 0 sin t cos t




x1(s)
x2(s)
x3(s)

0


M1 : ϕ (t, s) = (x1(s), x2(s), x3(s) cos t, x3(s) sin t) , (3.1)

where the surface M1 is obtained by the rotation of the curve

x(s) = (x1(s), x2(s), x3(s), 0)

about the two dimensional Euclidean plane span{ε1, ε2} . Let the profile curve of

M1 be unit speed spacelike curve. In that case, (x1
′(s))

2
+(x2

′(s))
2−(x3

′(s))
2

=
1. We suppose that x3(s) > 0. The moving frame field {e1, e2, e3, e4} on M1 is
determined as follows:

e1 = (x′1(s), x′2(s), x′3(s) cos t, x′3(s) sin t) ,

e2 = (0, 0,− sin t, cos t) ,

e3 =
1√

1 + x′3(s)2
(−x′2(s), x′1(s), 0, 0) ,

e4 =
1√

1 + x′3(s)2

(
x′3(s)x′1(s), x′3(s)x′2(s), (1 + x′3(s)2) cos t,

(1 + x′3(s)2) sin t
)
,
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where e1, e2 and e3, e4 are tangent vector fields and normal vector fields to M1,
respectively.Then it is easily seen that

〈e1, e1〉 = 〈e3, e3〉 = 1, 〈e2, e2〉 = 〈e4, e4〉 = −1.

We have the dual 1-forms as:

ω1 = ds and ω2 = −x3(s)dt.

After some computations, the components of the second fundamental form and
the connection forms are given as follows:

h311 =− d(s), h312 = 0, h322 = 0,

h411 =− c(s), h412 = 0, h422 = b(s)
(3.2)

and

ω12 =a(s)b(s)ω2, ω13 = −d(s)ω1, ω14 = −c(s)ω1,

ω23 =0, ω24 = −b(s)ω2, ω34 = a(s)d(s)ω1.

By taking the covariant derivative with respect to e1 and e2 we have

∇̃e1e1 = −d(s)e3 + c(s)e4, (3.3)

∇̃e2e1 = a(s)b(s)e2,

∇̃e1e2 = 0,

∇̃e2e2 = a(s)b(s)e1 − b(s)e4,
∇̃e1e3 = d(s)e1 − a(s)d(s)e4,

∇̃e2e3 = 0,

∇̃e1e4 = c(s)e1 − a(s)d(s)e3,

∇̃e2e4 = b(s)e2,

where

a(s) =
x′3(s)√

1 + (x3′)
2
, (3.4)

b(s) =

√
1 + (x3′)

2

x3(s)
, (3.5)

c(s) =
x′′3(s)√

1 + (x3′)
2
, (3.6)

d(s) =
x′′1(s)x′2(s)− x′′2(s)x′1(s)√

1 + (x3′)
2

. (3.7)

By using (2.2), (2.3) and (3.2), the mean curvature vector and Gaussian curva-
ture of the surface M1 are obtained as:

H =
1

2
(−d(s)e3 + (c(s) + b (s)) e4) (3.8)
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and
K = c(s)b (s) , (3.9)

respectively.
By using (2.1) and (3.3), we find the Laplacian of the Gauss map of M1 as :

∆G = L(s) (e1 ∧ e2) +M(s) (e2 ∧ e3) +N(s) (e2 ∧ e4) , (3.10)

where
L(s) = d2(s)− b2 (s)− c2 (s) , (3.11)

M(s) = d′ (s) + a(s)d(s)(b(s) + c(s)), (3.12)

N(s) = b′(s) + c′(s) + a(s)d2(s). (3.13)

Theorem 3.1. Let M1 be rotation surface of elliptic type given by the parametriza-
tion (3.1). If M1 has harmonic Gauss map then it has constant Gaussian cur-
vature.

Proof. Let the Gauss map of M1 be harmonic, i.e., ∆G = 0. So, from (3.10),
(3.11), (3.12) and (3.13) we have

d2(s)− b2 (s)− c2 (s) = 0, (3.14)

d′ (s) + a(s)d(s)(b(s) + c(s)) = 0,

b′(s) + c′(s) + a(s)d2(s) = 0.

By multiplying both sides of the second equation of (3.14) with d(s) and using
the third equation of (3.14) we have

d(s)d′ (s)− b(s)b′ (s)− c(s)c′ (s) = (b(s)c(s))′. (3.15)

By differeniating the first equation of (3.14) with respect to s and us-
ing (3.15), we have that b(s)c(s) =constant.Hence, from (3.9) we get K =
K0 =constant.

Theorem 3.2. Let M1 be the flat rotational surface of elliptic type given by the
parametrization (3.1). Then M1 has a pointwise 1-type Gauss map if and only
if the profile curve of M1 is characterized by one of the following way:

i)

x1(s) =− 1

δ1
sin (−δ1s+ δ2) + δ4,

x2(s) =
1

δ1
cos (−δ1s+ δ2) + δ4,

x3(s) =δ3,

(3.16)

where δ1, δ2, δ3 and δ4 are real constants and the Gauss map of M1 satisfies
(1.1) for f = δ21 − 1

δ23
and C = 0. If δ1δ3 = ±1 then the function f becomes zero

and it implies that the Gauss map is harmonic.
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ii)

x1(s) =

∫ (
1 + λ21

) 1
2 cos

(
− λ3

λ1 (1 + λ21)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

x2(s) =

∫ (
1 + λ21

) 1
2 sin

(
− λ3

λ1 (1 + λ21)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

x3(s) =λ1s+ λ2,

(3.17)

where λ1, λ2, λ3 and λ4 are real constants and the Gauss map of M1 satisfies

(1.1) for f(s) = 1
(λ1s+λ2)

2

(
λ2
3

1+λ2
1
− 1
)

and C = λ21e1 ∧ e2 +λ1
(
1 + λ21

) 1
2 e2 ∧ e4.

Proof. We suppose that M1 has pointwise 1-type Gauss map. By using (1.1)
and (3.10), we get

−f + f 〈C, e1 ∧ e2〉 = −L(s), (3.18)

f 〈C, e2 ∧ e3〉 = −M(s),

f 〈C, e2 ∧ e4〉 = N(s)

and
〈C, e1 ∧ e3〉 = 〈C, e1 ∧ e4〉 = 〈C, e3 ∧ e4〉 = 0. (3.19)

By taking the derivatives of all equations in (3.19) with respect to e2 and using
(3.18) we obtain

a(s)N(s)− L(s) + f = 0, (3.20)

a(s)M(s) = 0,

M(s) = 0,

respectively. From above equations, we have two cases. One of them is a(s) = 0,
M(s) = 0 and the other is a(s) 6= 0, M(s) = 0. Firstly, we suppose that a(s) = 0
and M(s) = 0. By using (3.4), we have that x3(s) = δ3=constant. It implies
that c(s) = 0, b (s) = 1

δ3
and M1 is flat. Since the profile curve x is spacelike

curve which is parameterized by arc-length, we can put

x′1(s) = cos δ(s) (or resp. sin δ(s)),

x′2(s) = sin δ(s) (or resp. cos δ(s)),
(3.21)

where δ is smooth angle function. Without loss of generality we assume that

x′1(s) = cos δ (s) and x′2(s) = sin δ (s)

We can do similar computations for the another case, too. By using third
equation of (3.20) and (3.12) we obtain that

d (s) = δ1, δ1 is non zero constant. (3.22)
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On the other hand by using (3.7), (3.21) and (3.22) we get

δ (s) = −δ1s+ δ2, (3.23)

where δ1, δ2 are real constants. Then by substituting (3.23) into (3.21) and
taking the integral we have the equation (3.16). Also the Laplacian of the Gauss
map of M1 with the equations a(s) = 0, b (s) = 1

δ3
, c(s) = 0 and d (s) = δ1 is

found as ∆G =
(
δ21 − 1

δ23

)
G

Now we suppose that a(s) 6= 0 and M(s) = 0. Since the surface M1 is flat,
i.e., K = 0. By using (3.9) we have that c(s) = 0. From (3.6) we get

x3(s) = λ1s+ λ2 (3.24)

for some constants λ1 6= 0 and λ2. In that case by using (3.4), (3.5) and (3.24)
we have

a(s) =
λ1

(1 + λ21)
1
2

(3.25)

and

b(s) =

(
1 + λ21

) 1
2

λ1s+ λ2
. (3.26)

Let consider that M(s) = 0 with c(s) = 0. In that case from (3.12), we obtain
that

d′ (s) + a(s)b(s)d(s) = 0 (3.27)

By using (3.25), (3.26) and (3.27) we have

d(s) =
λ3

λ1s+ λ2
, (3.28)

where λ3 is constant of integration. On the other hand, Since the profile curve
x is spacelike curve which is parameterized by arc-length, we can put

x′1(s) =
(
1 + λ21

) 1
2 cosλ (s) , (3.29)

x′2(s) =
(
1 + λ21

) 1
2 sinλ (s) ,

where λ is smooth angle function. By differentiating (3.29). we obtain

x′′1(s) = −
(
1 + λ21

) 1
2 sinλ (s)λ′ (s) , (3.30)

x′′2(s) =
(
1 + λ21

) 1
2 cosλ (s)λ′ (s) .

By using (3.7), (3.24), (3.29) and (3.30), we get

d(s) = −
(
1 + λ21

) 1
2 λ′ (s) . (3.31)

By combining (3.28) and (3.31) we obtain

λ (s) = − λ3

λ1 (1 + λ21)
1
2

ln(λ1s+ λ2) + λ4. (3.32)
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So by substituting (3.32) into (3.29), we get

x1(s) =

∫ (
1 + λ21

) 1
2 cos

(
− λ3

λ1 (1 + λ21)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

x2(s) =

∫ (
1 + λ21

) 1
2 sin

(
− λ3

λ1 (1 + λ21)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

Conversely, the surface M1 whose the profil curve given by (3.17) is pointwise
1-type Gauss map for

f(s) =
1

(λ1s+ λ2)
2

(
λ23

1 + λ21
− 1

)
and

C = λ21e1 ∧ e2 + λ1
(
1 + λ21

) 1
2 e2 ∧ e4.

Theorem 3.3. A non- minimal rotational surfaces of elliptic type M1 defined
by (3.1) has pointwise 1-type Gauss map of the first kind if and only if the mean
curvature vector of M1 is parallel .

Proof. From (3.8) we have that H = 1
2 (−d(s)e3 + (c(s) + b (s)) e4) . Let the

mean curvature vector of M1 be parallel, i.e., DH = 0. Then we get

De1H =
1

2
(−M(s)e3 +N(s)e4) = 0.

In this case we obtain that M(s) = N(s) = 0. From (3.10), we have that
∆G = L(s)e1 ∧ e2.

Conversely, if M1 has pointwise 1-type Gauss map of the first kind then
from (3.10) we get M(s) = N(s) = 0 and it implies that M1 has parallel mean
curvature vector.

Corollary 3.4. If rotational surfaces of elliptic type M1 given by (3.1) is min-
imal then it has pointwise 1-type Gauss map of the first kind.

3.2 Rotational surfaces of hyperbolic type with pointwise
1-type Gauss map in E4

2

In this subsection, first we consider rotational surfaces of hyperbolic type with
harmonic Gauss map. Moreover, we obtain a characterization of flat rotational
surfaces of hyperbolic type with pointwise 1-type Gauss map and give a rela-
tionship for non-minimal these surfaces with parallel mean curvature vector and
pointwise 1-type Gauss map of the first kind. The proofs of theorems in this
subsection are similar the proofs of theorems in previous section so we give the
theorems as without proof.
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Rotational surface of hyperbolic type M2 is defined by

ϕ (t, s) =


cosh t 0 sinh t 0

0 1 0 0
sinh t 0 cosh t 0

0 0 0 1




x1(s)
x2(s)

0
x4(s)


M2 : ϕ (t, s) = (x1(s) cosh t, x2(s), x1(s) sinh t, x4(s)) , (3.33)

where the surface M2 is obtained by the rotation of the curve

x(s) = (x1(s), x2(s), 0, x4(s))

about the two dimensional Euclidean plane spanned by ε2 and ε4. Let the profile
curve of M2 be unit speed spacelike curve. In that case (x1

′(s))
2

+ (x2
′(s))

2 −
(x4
′(s))

2
= 1. We assume that x1(s) > 0. The moving frame field {e1, e2, e3, e4}

on M2 is choosen as follows:

e1 = (x′1(s) cosh t, x′2(s), x′1(s) sinh t, x′4(s)) ,

e2 = (sinh t, 0, cosh t, 0) ,

e3 =
1√

ε (x′1(s)2 − 1)
(0, x′4(s), 0, x′2(s)) ,

e4 =
1√

ε(x′1(s)2 − 1)

( (
x′1(s)2 − 1

)
cosh t,−x′1(s)x′2(s),

(
x′1(s)2 − 1

)
sinh t,

−x′1(s)x′4(s)
)
,

where e1, e2 and e3, e4 are tangent vector fields and normal vector fields to
M2, respectively and ε is signature of (x1

′)
2 − 1. If (x1

′)
2 − 1 is positive (resp.

negative) then ε = 1 (resp. ε = −1). It is easily seen that

〈e1, e1〉 = −〈e2, e2〉 = 1, 〈e3, e3〉 = −〈e4, e4〉 = ε.

we have the dual 1-forms as:

ω1 = ds and ω2 = −x1(s)dt.

After some computations, components of the second fundamental form and the
connection forms are obtained by:

h311 =d(s), h312 = 0, h322 = 0,

h411 =c(s), h412 = 0, h422 = −εb(s)
(3.34)

and

ω12 =a(s)b(s)ω2, ω13 = d(s)ω1, ω14 = c(s)ω1,

ω23 =0, ω24 = εb(s)ω2, ω34 = a(s)d(s)ω1.
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Differentiating covariantly with respect to e1 and e2 we get

∇̃e1e1 = εd(s)e3 − εc(s)e4 (3.35)

∇̃e2e1 = a(s)b(s)e2

∇̃e1e2 = 0

∇̃e2e2 = a(s)b(s)e1 + b(s)e4

∇̃e1e3 = −d(s)e1 − εa(s)d(s)e4

∇̃e2e3 = 0

∇̃e1e4 = −c(s)e1 − εa(s)d(s)e3

∇̃e2e4 = −εb(s)e2

where

a(s) =
x′1(s)√

ε
(

(x1′)
2 − 1

) ,

b(s) =

√
ε
(

(x1′)
2 − 1

)
x1(s)

,

c(s) =
x′′1(s)√

ε
(

(x1′)
2 − 1

) ,
d(s) =

x′′2(s)x′4(s)− x′′4(s)x′2(s)√
ε
(

(x1′)
2 − 1

) .

By using (2.2), (2.3) and (3.34), the mean curvature vector and Gaussian cur-
vature of the surface M2 are obtained as follows:

H =
1

2
(εd(s)e3 − ε (c(s) + εb (s)) e4)

and
K = c(s)b (s) ,

respectively.
By using (2.1) and (3.35) , we find the Laplacian of the Gauss map of M2

as:
∆G = L(s) (e1 ∧ e2) +M(s) (e2 ∧ e3) +N(s) (e2 ∧ e4) ,

where
L(s) = ε

(
d2(s)− c2 (s)− b2 (s)

)
,

M(s) = ε (d′ (s) + εa(s)d(s) (c(s) + εb (s))) ,

N(s) = −ε
(
c′(s) + εb′(s) + εa(s)d2(s)

)
.
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Theorem 3.5. Let M2 be rotation surface of hyperbolic type given by the pa-
rameterization (3.33). If M2 has Gauss map harmonic then it has constant
Gaussian curvatrure.

Theorem 3.6. Let M2 be flat rotation surface of hyperbolic type given by the
parameterization (3.33). Then M2 has pointwise 1-type Gauss map if and only
if the profile curve of M2 is characterized in one of the following way:

i)

x1(s) = δ1,

x2(s) = − 1

δ2
sinh (−δ2s+ δ3) + δ4,

x4(s) = − 1

δ2
cosh (−δ2s+ δ3) + δ4,

where δ1, δ2, δ3 and δ4 are real constants and the Gauss map G satisfies
(1.1) for f = 1

δ21
− δ22 and C = 0. If δ1δ2 = ±1 then the function f becomes zero

and it implies that the Gauss map is harmonic.
ii)

x1(s) = λ1s+ λ2,

x2(s) =

∫ (
λ21 − 1

) 1
2 sinh

(
λ3

λ1 (λ21 − 1)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

x4(s) =

∫ (
λ21 − 1

) 1
2 cosh

(
λ3

λ1 (λ21 − 1)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

where λ1, λ2, λ3 and λ4 are real constants and without loss of generality we
suppose that λ21−1 > 0. Morever the Gauss map G satisfies (1.1) for the function

f(s) = 1
(λ1s+λ2)

2

(
1− λ2

3

λ2
1−1

)
and C = −λ21e1 ∧ e2 + λ1

(
λ21 − 1

) 1
2 e2 ∧ e4.

Theorem 3.7. A non- minimal rotational surfaces of hyperbolic type M2 defined
by (3.33) has pointwise 1-type Gauss map of the first kind if and only if M2 has
parallel mean curvature vector

Corollary 3.8. If rotational surfaces of hyperbolic type M2 given by (3.33) is
minimal then it has pointwise 1-type Gauss map of the first kind.

3.3 Rotational surfaces of parabolic type with pointwise
1-type Gauss map in E4

2

In this subsection, we study rotational surfaces of parabolic type with pointwise
1-type Gauss map. We show that flat rotational surface of parabolic type has
pointwise 1-type Gauss map if and only if its Gauss map is harmonic. Also we
conclude that flat rotational surface of parabolic type has harmonic Gauss map
if and only if it has parallel mean curvature vector.
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We consider the pseudo-orthonormal base {ε1, ξ2, ξ3, ε4} of E4
2 such that ξ2 =

ε2+ε3√
2
, ξ3 = −ε2+ε3√

2
〈ξ2, ξ2〉 = 〈ξ3, ξ3〉 = 0 and 〈ξ2, ξ3〉 = −1. Let consider α

spacelike curve is given by

x (s) = x1(s)ε1 + x2(s)ε2 + x3(s)ε3

or we can express x according to pseudo-orthonormal base {ε1, ξ2, ξ3, ε4} as
follows:

x (s) = x1(s)ε1 + p(s)ξ2 + q(s)ξ3,

where p(s) = x2(s)+x3(s)√
2

and q(s) = −x2(s)+x3(s)√
2

. The rotational surface of

parabolic type M3 is defined by

M3 : ϕ (t, s) = x1(s)ε1 + p(s)ξ2 + (−t2p(s) + q(s))ξ3 +
√

2tp(s)ε4, (3.36)

We suppose that x is parameterized by arc-length, that is, (x1
′(s))

2−2p′(s)q′(s) =
1. Now we can give a moving orthonormal frame {e1, e2, e3, e4} for M3 as follows:

e1 = x1
′(s)ε1 + p′(s)ξ2 + (−t2p′(s) + q′(s))ξ3 +

√
2tp′(s)ε4,

e2 = −
√

2tξ3 + ε4,

e3 = ε1 +
x1
′(s)

p′(s)
ξ3,

e4 = x1
′(s)ε1 + p′(s)ξ2 + (

1

p′(s)
+ q′(s)− t2p′(s))ξ3 +

√
2tp′(s)ε4,

where p′(s) is non zero. Then it is easily seen that

〈e1, e1〉 = 〈e3, e3〉 = 1, 〈e2, e2〉 = 〈e4, e4〉 = −1.

We have the dual 1-forms as:

ω1 = ds and ω2 = −
√

2p (s) dt.

Also we obtain components of the second fundamental form and the connection
forms as:

h311 =c(s), h312 = 0, h322 = 0,

h411 =− b(s), h412 = 0, h422 = a(s)
(3.37)

and

ω12 =a(s)ω2, ω13 = c(s)ω1, ω14 = −b(s)ω1,

ω23 =0, ω24 = −a(s)ω2, ω34 = −c(s)ω1.

Then, by taking the covariant derivatives with respect to e1 and e2, weget as

108



follows:

∇̃e1e1 = c(s)e3 + b(s)e4, (3.38)

∇̃e2e1 = a(s)e2,

∇̃e1e2 = 0,

∇̃e2e2 = a(s)e1 − a(s)e4,

∇̃e1e3 = −c(s)e1 + c(s)e4,

∇̃e2e3 = 0,

∇̃e1e4 = b(s)e1 + c(s)e3,

∇̃e2e4 = a(s)e2,

where

a(s) =
p′(s)

p(s)
, (3.39)

b(s) =
p′′(s)

p′(s)
, (3.40)

c(s) =
x′′1(s)p′(s)− p′′(s)x′1(s)

p′(s)
. (3.41)

By using (2.2), (2.3) and (3.37), the mean curvature vector and Gaussian cur-
vature of the surface M3 are obtained as follows:

H =
1

2
(c(s)e3 + (a(s) + b (s)) e4) (3.42)

and
K = a(s)b (s) , (3.43)

respectively.
By using (2.1) and (3.38), we find the Laplacian of the Gauss map of M3 by

∆G = L(s) (e1 ∧ e2) +M(s) (e2 ∧ e3) +N(s) (e2 ∧ e4) , (3.44)

where
L(s) = c2(s)− a2 (s)− b2 (s) , (3.45)

M(s) = c′ (s) + c(s)(a(s) + b(s)), (3.46)

N(s) = c2(s) + a′ (s) + b′ (s) . (3.47)

Theorem 3.9. Let M3 be flat rotation surface of parabolic type given by the
parameterization (3.36). Then M3 has pointwise 1-type Gauss map if and only
if the profile curve of M3 is given by

x1(s) =
ε

µ1
(ln(µ1s+ µ2)(µ1s+ µ2)) + (µ4 − ε) s+ µ5,

p(s) = µ1s+ µ2,

q(s) =
1

2µ1

∫ (
(ε ln (µ1s+ µ2) + µ4)

2 − 1
)
ds,
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where µ1, µ2, µ4, µ5 real constants. Morever the surface M3 has harmonic
Gauss map for f = 0.

Proof. We suppose that M3 has pointwise 1-type Gauss map. In that case the
Gauss map of M3 satisfies (1.1). By using (1.1) and (3.44), we get

−f + f 〈C, e1 ∧ e2〉 = −L(s), (3.48)

f 〈C, e2 ∧ e3〉 = −M(s),

f 〈C, e2 ∧ e4〉 = N(s)

and
〈C, e1 ∧ e3〉 = 〈C, e1 ∧ e4〉 = 〈C, e3 ∧ e4〉 = 0. (3.49)

By taking the derivatives of all equations in (3.49) with respect to e2 and using
(3.48) we obtain

L(s)−N(s) = f, (3.50)

M(s) = 0,

respectively. Since the surface M3 is flat, i.e., K = 0 from (3.43) we have that
b(s) = 0. From (3.40) we obtain that

p(s) = µ1s+ µ2 (3.51)

for some constants µ1 6= 0 and µ2. By using (3.39) and (3.51) we have that

a(s) =
µ1

µ1s+ µ2
. (3.52)

If we consider M(s) = 0 with the equations b(s) = 0 and a(s) = µ1

µ1s+µ2
, from

(3.46) we get

c(s) =
µ3

µ1s+ µ2
. (3.53)

On the other hand, by using the first equation of (3.50), (3.45), (3.47), (3.52)
and (3.53) we obtain that f = 0. It means that L(s) = N(s) = 0 and we have

µ3 = εµ1, ε = ±1.

If we consider (3.41), (3.51) and (3.53) we get

x1(s) =
ε

µ1
(ln(µ1s+ µ2)(µ1s+ µ2)) + (µ4 − ε) s+ µ5, (3.54)

where µ4, µ5 are constants of integration. Since x is unit speed spacelike curve
we get

q′(s) =
(x1
′(s))

2 − 1

2p′(s)
. (3.55)

By substituting (3.51) and (3.54) into (3.55) we obtain

q(s) =
1

2µ1

∫ (
(ε ln (µ1s+ µ2) + µ4)

2 − 1
)
ds.

This completes the proof.
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Theorem 3.10. Let M3 be flat rotational surfaces of parabolic type given by
(3.36). M3 has harmonic Gauss map if and only if its mean curvature vector is
parallel.

Proof. We suppose that M3 has parallel mean curvature vector, i.e., DH = 0.
From (3.42) we have that

De1H =
1

2
(M(s)e3 +N(s)e4) = 0.

In this case we obtain that M(s) = N(s) = 0. Since M3 is a flat surface, from
the previous theorem we have

b(s) = 0 and a(s) =
µ1

µ1s+ µ2
.

By considering the equation M(s) = 0 with above equations and using (3.46)
we get

c(s) =
µ3

µ1s+ µ2
,

where µ3 is the constant of integration. It implies that L(s) = 0. Hence we
obtain that Gauss map of M3 is harmonic .

Conversely, if M3 is harmonic then it is easily seen that DH = 0.

The first author is supported by Ahi Evran University :PYO-EGF.4001.15.002.
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Eva M. Alarcón: Departamento de Matemáticas, Campus de Espinardo, Universidad de
Murcia, 30100 Murcia, Spain, e-mail:evamaria.alarcon@um.es,
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Abstract. Spacelike hypersurfaces in the Lorentz-Minkowski (n+1)-
dimensional space Ln+1 can be endowed with another Riemannian metric,
the one induced by the Euclidean space Rn+1. The hypersurfaces with the
same mean curvature with respect to both metrics can be locally deter-
mined by a smooth function u satisfying |Du| < 1, and being the solution
to a certain partial differential equation. We call this equation the HR = HL

hypersurface equation. In the particular case in which n = 2 and both curva-
tures vanish, Kobayashi proved that the graphs determined by the solutions
of such equation are open pieces of spacelike planes or helicoids, in the re-
gion where they are spacelike. In this manuscript we prove the existence of
a family of solutions whose graphs have non-zero mean curvature, and we
present an inequality relating the mean curvature to the width of the domain
of certain solutions, those without critical points.
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1 Introduction and background

Let us consider the differential operator given by

Q(u) = div

((
1√

1− |Du|2
− 1√

1 + |Du|2

)
Du

)
,

where u ∈ C2(Rn), and D, div and | · | stand for the gradient, the divergence
and the Euclidean norm on Rn, respectively. We are interested in studying the
equation

Q(u) = 0, with |Du| < 1. (1.1)
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The above divergence-type partial differential equation is not an arbitrary
one, it has a geometrical meaning.

A hypersurface in the Lorentz-Minkowski space Ln+1 is said to be spacelike
if its induced metric is a Riemannian one. Therefore, spacelike hypersurfaces in
Ln+1 can be endowed with two different Riemannian metrics, the metric induced
by the Euclidean space Rn+1 and the metric inherited from Ln+1. Consequently,
we can consider two different mean curvature functions on a spacelike hypersur-
face related to both metrics, HR and HL respectively.

On the other hand, it is well known that any spacelike hypersurface Σ in
Ln+1 can be locally described as a spacelike graph over an open subset of a
spacelike hyperplane, which without loss of generality can be supposed to be
the hyperplane xn+1 = 0 (see [4, Proposition 3.3]). Let u be the function that
describes such a graph, then the spatiality condition becomes |Du| < 1. The
functions HR and HL can be written in terms of the function u and its partial
derivatives obtaining the expressions

HR =
1

n
div

(
Du√

1 + |Du|2

)
and HL =

1

n
div

(
Du√

1− |Du|2

)
. (1.2)

Therefore, a spacelike graph determined by u satisfies HR = HL if and only if u
is a solution of (1.1). For this reason (1.1) is called the HR = HL hypersurface
equation. This equation is a quasilinear elliptic partial differential equation,
everywhere except at those points at which Du vanishes, where the equation is
parabolic, see [1].

As a particular case, we can consider the situation where the graph is si-
multaneously minimal and maximal, that is HR = HL = 0. The geometry of
minimal and maximal graphs has been widely studied. One of the main results
on minimal graphs is the well-known Bernstein theorem, proved by Bernstein [5]
in 1915, which states that the only entire minimal graphs in R3 are the planes.
Some decades later, in 1970, Calabi [7] proved its analogous version for spacelike
graphs in the Lorentz-Minkowski space, the Calabi-Bernstein theorem, which
states that the only entire maximal graphs in L3 are the spacelike planes. An
important difference between both results is that the Bernstein theorem can be
extended to minimal graphs in Rn+1 up to dimension n = 7, as it was proved
by Bombieri, di Giorgi and Giusti [6], but it is no longer true for higher dimen-
sions. However, the Calabi-Bernstein theorem holds true for any dimension as
it was proved by Calabi [7] for dimension n ≤ 4, and by Cheng and Yau [8] for
arbitrary dimension.

As an immediate consequence of the above results, we conclude that the only
entire graphs that are simultaneously minimal in Rn+1 and maximal in Ln+1

are the spacelike hyperplanes.
Going a step further, we can consider spacelike graphs with the same con-

stant mean curvature functions HR and HL. Heinz [11], Chern [9] and Flan-
ders [10] proved that the only entire graphs with constant mean curvature HR

in Rn+1 are the minimal graphs. The Lorentzian version of this fact is not true,
since there are examples of entire spacelike graphs with constant mean curva-
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ture HL in Ln+1 which are not maximal, for instance the hyperbolic spaces.
However, taking into account the Calabi-Bernstein theorem, we conclude again
that the only complete spacelike hypersurfaces in Ln+1 with the same constant
mean curvature functions HR and HL are the spacelike hyperplanes.

Kobayashi [12] studied the same problem without assuming any global hy-
pothesis. He showed that the graphs of the solutions to (1.1) with HR = HL = 0
are open pieces of a spacelike plane or of a helicoid, in the region where the heli-
coid is a spacelike surface. Recently, Albujer, Caballero and Sánchez [2, 3] have
continued with the study of spacelike surfaces with the same mean curvature
in R3 and in L3, not necessarily constant. On one hand, they have shown that
the Gaussian curvature in R3 of those surfaces is always non-positive and have
obtained several interesting consequences about the geometry of such surfaces.
On the other hand, they have obtained results on the solutions to the HR = HL

surface equation, which are not derived from the sign of the Gaussian curvature.
In general dimension, Lee and Lee [13] have recently presented non-planar ex-

amples of simultaneously minimal and maximal spacelike graphs in the Lorentz-
Minkowski space. Their examples can be seen as generalized ruled hypersur-
faces, in fact they are a natural generalization of helicoids. However, there is
no known classification of such hypersurfaces similar to Kobayashi’s result. In
[1] the authors have shown that those hypersurfaces do not have elliptic points
and have obtained several interesting consequences about the geometry of such
hypersurfaces, generalizing some results in [2].

In this manuscript we prove the existence of a solution to the HR = HL

hypersurface equation which constitutes the first evidence of the existence of
examples with non-zero mean curvature, following the ideas of the example
obtained in [3] in dimension 2. Finally, we generalize some results on the graphs
of the solutions which are not a consequence of the non-existence of elliptic
points, specifically Lemma 7, Theorem 8 and Corollary 1 from [2].

2 Preliminaries

Let Ln+1 be the (n + 1)-dimensional Lorentz-Minkowski space, that is, Rn+1

endowed with the metric

〈·, ·〉L = dx2
1 + ...+ dx2

n − dx2
n+1,

where (x1, ..., xn+1) are the canonical coordinates in Rn+1, and let | · |L denote
its norm. It is easy to see that the Levi-Civita connections of the Euclidean
space Rn+1 and the Lorentz-Minkowski space Ln+1 coincide, so we will just
denote it by ∇.

A (connected) hypersurface Σn in Ln+1 is said to be a spacelike hypersurface
if Ln+1 induces a Riemannian metric on Σ, which is also denoted by 〈·, ·〉L.
Given a spacelike hypersurface Σ, we can choose a unique future-directed unit
normal vector field NL on Σ. The mean curvature function of Σ with respect

115



to NL is defined by

HL = − 1

n
(kL1 + ...+ kLn ),

where kLi , i = 1, ..., n, stand for the principal curvatures of (Σ, 〈·, ·〉L).
The same topological hypersurface can also be considered as a hypersurface

of the Euclidean space, that is Rn+1 with its usual Euclidean metric. For sim-
plicity, we will just denote the Euclidean space by Rn+1, the Euclidean metric
and the induced metric on Σ by 〈·, ·〉R, and its norm by | · |R. In such a case,
Σ admits a unique upwards directed unit normal vector field, NR. The mean
curvature function of Σ with respect to NR is defined by

HR =
1

n
(kR1 + ...+ kRn ),

where kRi , i = 1, ..., n, stand for the principal curvatures of (Σ, 〈·, ·〉R).
It is interesting to observe that the mean curvature functions have an ex-

pression in terms of the normal curvatures of any set of orthogonal directions.
Specifically,

HL = − 1

n
(κLw1

+ . . .+ κLwn
) and HR =

1

n
(κRv1 + . . .+ κRvn), (2.1)

where {v1, . . . , vn} and {w1, . . . , wn} are orthonormal basis of TpΣ with respect
to 〈·, ·〉R and 〈·, ·〉L, respectively.

If our spacelike hypersurface is the graph of a smooth function u ∈ C∞(Ω),

Σu = {(x1, ..., xn, u(x1, ..., xn)) : (x1, ..., xn) ∈ Ω},

Ω being an open subset of the hyperplane xn+1 = 0, which can be identified
with Rn, it is easy to check that the spatiality condition is written as |Du| < 1,
where D and | · | stand for the gradient operator and the norm in the Euclidean
space Rn, respectively. In this case, it is possible to get expressions for the
normal vector fields NL and NR, as well as for the mean curvature functions
HL and HR, in terms of u. Specifically, with a straightforward computation we
get

NL =
(Du, 1)√
1− |Du|2

and NR =
(−Du, 1)√
1 + |Du|2

. (2.2)

And for the mean curvature functions we have

HL =
1

n
div

(
Du√

1− |Du|2

)
and HR =

1

n
div

(
Du√

1 + |Du|2

)
, (2.3)

where div denotes the divergence operator in Rn.
Let us observe that

coshψ =
1√

1− |Du|2
and cos θ =

1√
1 + |Du|2

,

where ψ and θ denote the hyperbolic angle between NL and en+1 = (0, ..., 0, 1)
and the angle between NR and en+1, respectively.

The following result can be found in [2], and will be used in Section 4.
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Lemma 2.1. [2, Lemma 2] Let Σ be a spacelike hypersurface in Ln+1. Given
p ∈ Σ and v ∈ TpΣ, let κLv (p) and κRv (p) denote the normal curvatures at p in
the direction of v with respect to 〈·, ·〉L and 〈·, ·〉R, respectively. Then

|v|2R
cos θ(p)

κRv (p) = − |v|2L
coshψ(p)

κLv (p).

3 A solution with non-zero mean
curvature

Let us consider rotationally invariant spacelike graphs with respect to a vertical
axis. Therefore, we can assume without loss of generality that the graph Σ∗u is
determined by a function

u(x1, ..., xn) = f(r), r = x2
1 + ...+ x2

n, (3.1)

being f ∈ C∞(I) for certain I ⊆ [0,+∞). In this case, |Du| < 1 reads

4 (f ′(r))
2
r < 1 and the HR = HL hypersurface equation yields

2f ′′r + f ′n+ 4(f ′)3r(n− 1)

(1 + 4(f ′)2r)3/2
=

2f ′′r + f ′n− 4(f ′)3r(n− 1)

(1− 4(f ′)2r)3/2
. (3.2)

It can be checked that, given any set of initial conditions (r0, f(r0), f ′(r0)) such

that r0 > 0, f ′(r0) 6= 0 and 4 (f ′(r0))
2
r0 < 1, there exists a local solution

of (3.2) by the Picard-Lindelöf theorem.
It is interesting to observe that these examples cannot be entire because of

the following theorem which can be found in [1].

Theorem 3.1. The only entire spacelike graphs Σu determined by a function u
given by (3.1) such that HR = HL are the horizontal hyperplanes.

4 On the width of the domain of the
solutions

We define the width of a set in Rn as the supremum of the diameter of the closed
balls contained in it. This is an intuitive definition which is a generalization of
the classical concept of width for a convex body, see [15].

Let u be a solution to (1.1) over an open set Ω ⊆ Rn, Σu its graph and
π : Σu −→ Ω the canonical projection. We define Σ∗u as the graph of u over the
following open set

Ω∗ = {(x1, . . . , xn) ∈ Ω : Du(x1, . . . , xn) 6= 0}. (4.1)

The goal of this section is to give an upper bound for the width of the set
Ω∗. Before stating our main result, we get some previous local computations

117



involving the Riemannian and Lorentzian normal curvatures of Σ∗u in some priv-
ileged directions. As well as a lemma relating the mean curvature of Σu to that
of its level hypersurfaces.

Given p ∈ Σ∗u, we consider its corresponding level hypersurface contained in

Rn, S̃c, and its lifting to Σu, Sc. We will work in a neighborhood of p, hence
we can assume that Sc lies on Σu. Since Du 6= 0 in Ω∗, this distribution is
integrable, so we can consider the integral curve through π(p). We denote by α
its lifting to Σ∗u. Notice that α′ = (Du, |Du|2) ◦ π.

Therefore, we have two submanifolds of Σ∗u, namely Sc and α, defined on a
neighborhood of p which are orthogonal at p for both 〈·, ·〉R and 〈·, ·〉L. Now,

let {e1, . . . , en−1} be an orthonormal basis of Tπ(p)S̃c. The vectors {(e1, 0), . . . ,
(en−1, 0)} constitute an orthonormal basis of TpSc in both Rn+1 and Ln+1, and
are orthogonal to α′ for both metrics. Then, Lemma 2.1 gives us the following
relationships, where we have omitted the point p on behalf of simplicity

κR(ei,0) = − cos θ

coshψ
κL(ei,0) = −

√
1− |Du|2
1 + |Du|2

κL(ei,0), i = 1, . . . , n− 1 and

κRα′ = −|α
′|2L
|α′|2R

cos θ

coshψ
κLα′ = −

(
1− |Du|2

1 + |Du|2

) 3
2

κLα′ .

By denoting A =
√

1−|Du|2
1+|Du|2 , we rewrite the previous expressions as

κR(ei,0) = −AκL(ei,0), i = 1, . . . , n− 1 and κRα′ = −A3 κLα′ . (4.2)

As we are dealing with orthogonal directions at p for both 〈·, ·〉R and 〈·, ·〉L,
and u is a solution of the HR = HL hypersurface equation, from (2.1) we get

−κL(e1,0) − . . .− κ
L
(en−1,0) − κ

L
α′ = κR(e1,0) + . . .+ κR(en−1,0) + κRα′ ,

which jointly with (4.2) implies

−κLα′ =
1

A2 +A+ 1
(κL(e1,0) + . . .+ κL(en−1,0)). (4.3)

Lemma 4.1. Let Σu be a spacelike graph in Ln+1 over a domain Ω ⊆ Rn such
that HR = HL. If S̃c denotes the level hypersurface u ≡ c in Ω∗ and Hc is its
mean curvature, then

|HL| ≤
n− 1

n
√

2
|Hc| ◦ π (4.4)

and the equality is hold if and only if HL = 0.

Proof. We work at a point p ∈ Sc and we follow the notation introduced at the
beginning of this section. For each i = 1, . . . , n we take a curve in S̃c, α̃i, with
α̃i(0) = p and α̃i

′(0) = ei. Let αi be its lifting to Sc. Notice that α′i = (α̃′i, 0).
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It is possible to relate the Lorentzian normal curvature κL(ei,0) of Σu at p in

the direction of α′i with the normal curvature κcei of S̃c at π(p) in the direction

of α̃i
′:

κL(ei,0) = 〈∇titi, NL〉L =
|Du|√

1− |Du|2

〈
Dt̃i

t̃i,
Du

|Du|

〉
Rn

◦π =
|Du|√

1− |Du|2
κcei◦π.

Here D and 〈·, ·〉Rn stand for the Levi-Civita connection and the usual metric

of the Euclidean space Rn, respectively, ti =
α′i
|α′i|L

, t̃i =
α̃i
′

|α̃i′|
and

Du

|Du|
is the

unitary normal vector field to S̃c in Rn.
Therefore, from (4.3) we get

n|HL| = (n− 1)
A+ 1

A2 +A+ 1

|Du|√
1 + |Du|2

|Hc| ◦ π ≤ (n− 1)f(|Du|) |Hc| ◦ π,

where f(x) = x√
1+x2

. Since f is increasing and |Du| < 1, we get (4.4).

Theorem 4.2. Let u be a solution to the HR = HL hypersurface equation
defined on an open set Ω ⊆ Rn. Then

width(Ω∗) ≤
√

2 (n− 1)

n infΩ∗ |HL|
. (4.5)

Proof. If infΩ∗ |HL| = 0, there is nothing to prove.
Otherwise, we have |HL| ≥ infΩ∗ |HL| = C > 0 in Σ∗u. And, as a consequence

of (4.4), we get

|Hc| >
nC
√

2

n− 1
> 0 in Ω∗. (4.6)

First of all, let us notice that Ω∗ is an open set of Rn. We consider all the
level hypersurfaces in Ω∗, we order them by the value of u on each of them and
we orient them in a way such that its normal vectors point to the direction on
which u decreases.

We proceed by reductio ad absurdum assuming that the width of Ω∗ is

bigger than
(n− 1)

√
2

nC
. Then, there exists a point q ∈ Ω∗ such that B̄q =

B̄q
(
(n− 1)/n

√
2C
)
⊂ Ω∗. Since B̄q is compact, u attains a maximum in it.

Even more, Du does not vanish in Bq = Bq
(
(n− 1)/n

√
2C
)
, and so this ex-

tremal value is only attained on the boundary of the ball.
We pick a point p at which a maximum is attained. The level hypersurface

through p lies in Ω∗ \Bq. And so, it is tangent to the boundary of the ball at p.
The normal vector to the hypersurface at p points to the interior of the ball, see
Figure 1. Consequently, using the tangency principle (see [14, Theorem 3.2.4]

119



Figure 1: Level hypersurface at p.

for the 2-dimensional case), inequality (4.6) implies that Hc ≤ −n
√

2C/(n− 1)
at p. Analogously, we get that Hc ≥ n

√
2C/(n − 1) at p̄, p̄ being a point at

which u attains a minimum in the ball. By a continuity argument, there is a
point in the ball at which Hc vanishes, which is a contradiction.

As a direct consequence of Theorem 4.2, we get the following results.

Corollary 4.3. Let u be a solution to the HR = HL hypersurface equation
defined on an open set Ω ⊆ Rn and assume that Ω∗ is a set of infinite width.
Then infΣu

|HL| = 0.
Equivalently, there do not exist spacelike graphs satisfying HR = HL, |HL| ≥

C for a certain constant C > 0 and width(Ω∗) =∞.

Corollary 4.4. Let u be a solution to the HR = HL hypersurface equation
defined on an open set Ω ⊆ Rn with constant mean curvature. Then

width(Ω∗) ≤
√

2 (n− 1)

n |HL|
.
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1 Introduction

In late 1970, the theory of finite type submanifolds of Euclidean submanifolds
was introduced by B.-Y. Chen, [7]. Since then, many mathematicians have
characterized or classified submanifolds of Euclidean space or pseudo–Euclidean
space in terms of finite type. Later, B.-Y.Chen and P. Piccinni extended the no-
tion of finite type of submanifolds to Gauss map of submanifolds, [8]. The report
[9] and the second edition of above mentioned book [10] are useful references to
understand recent developments and open problems of this area.

A smooth map φ : M −→ Ems from a (pseudo)–Riemannian manifold into
a (pseudo)–Euclidean space is called of finite type if it has a finite spectral
decomposition

φ = φ0 +

k∑
i=1

φi, (1.1)
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where φ0 is a constant map, and each non–constant maps φi satisfies ∆φi = λiφi
for some constant λi ∈ R. If the spectral decomposition (1.1) contains exactly
k terms with different values for λi, then the map φ is called of k-type. Thus,
a (pseudo)–Riemannian submanifold M of a (pseudo)–Euclidean space has 1–
type Gauss map ν if and only if ∆ν = λ(ν + C) for some λ ∈ R and for some
constant vector C.

On the other hand, it was observed that the Gauss map of some submanifolds
such as helicoid, catenoid, right cones in E3 and Enneper’s hypersurfaces in En+1

1

satisfies
∆ν = f(ν + C) (1.2)

for some smooth function f on M and some constant vector C, [13, 16]. This
gives a new terminology, namely that, a submanifold of a (pseudo)–Euclidean
space is said to have pointwise 1–type Gauss map if it satisfies (1.2). In partic-
ular, if C is zero, it is said to be of the first kind. Otherwise, it is said to be of
the second kind.

Also, rotational surfaces in a (pseudo)–Euclidean space which are the main
focus of the present paper are another active research field in differential geom-
etry. In 1919, C. L. Moore introduced generel rotational surfaces in the four
dimensional Euclidean space, [19]. A rotational surface in E4 is a surface left
invariant by a rotation in E4 which is defined as a linear transformation of pos-
itive determinant preserving distance and leaving one point fixed. Moreover, F.
Cole studied the general theory of rotation in E4, [12].

The rotational surfaces in the pseudo–Euclidean space E4
2, called Vranceanu

rotational surfaces which is a particular case of the rotational surfaces studied
in this article were studied for different purposes. The complete classification
of Vranceanu rotational surfaces in E4

2 with zero mean curvature was obtained
in [15]. It was proved that a flat rotational surface in E4

2 with pointwise 1–type
Gauss map is either the product of two plane hyperbolas or the product of a
plane circle and a plane hyperbola, [17].

In [1], F. K. Aksoyak and Y. Yaylı gave a classification of flat general rota-
tional surfaces with pointwise 1–type Gauss map in the pseudo–Euclidean space
E4

2 which includes similar results given in [17].
Recently, Y. Aleksieva, V. Milousheva and N. C. Turgay studied general

rotational surfaces in the pseudo–Euclidean space E4
2 with zero mean curvature

vector in [2] and then the first author, E. Canfes and U. Dursun classified such
rotational surfaces with pointwise 1–type Gauss map in [4].

Moreover, there are many studies about the rotational surfaces in the pseudo–
Euclidean space and different spaces with pointwise 1–type Gauss map, [3, 11,
18].

On the other hand, pseudo–umbilical submanifolds are also well–known and
have been studied in many articles, [6, 14, 5].

In this article, we consider two families of rotational surfaces in the pseudo–
Euclidean space E4

2 with profile curves lying in 2–dimensional planes. First, we
determine the pseudo–umbilical rotational surfaces in these families. Then, we
show that there exists no a non–planar pseudo–umbilical rotational surface in
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these families with pointwise 1–type Gauss map of the second kind. Finally, we
give a classification of all such pseudo–umbilical surfaces in E4

2 with pointwise
1–type Gauss map of the first kind.

2 Preliminaries

2.1 Basics of Submanifold Theory

Let Emt be the m–dimensional pseudo–Euclidean space with the canonical metric
given by

g̃ =

m−t∑
i=1

(dxi)
2 −

m∑
i=m−t+1

(dxi)
2,

where (x1, x2, . . . , xm) is a standard rectangular coordinate system in Emt .
For a point x0 ∈ Emt and c 6= 0, we put

Sm−1
t (x0, c) =

{
x ∈ Emt | 〈x− x0,x− x0〉 = c−1

}
if c > 0,

Hm−1
t (x0, c) =

{
x ∈ Emt+1 | 〈x− x0,x− x0〉 = c−1

}
if c < 0,

where 〈, 〉 denotes the indefinite inner product associated to g̃. Sm−1
t (x0, c) and

Hm−1
t (x0, c) are called, respectively, a pseudo–sphere and a pseudo–hyperbolic

space. When x0 is the origin, we simply denote Sm−1
t (0, c) and Hm−1

t (0, c) by
Sm−1
t (c) and Hm−1

t (c).
A vector v ∈ Emt is called spacelike (resp., timelike) if 〈v, v〉 > 0 or v = 0

(resp., 〈v, v〉 < 0). A vector v is called lightlike if it is non–zero and it satisfies
〈v, v〉 = 0.

From now on, we use the following convention on the range of indices:

1 ≤ A,B,C, . . . ≤ n+ 2, 1 ≤ i, j, k, . . . ≤ n, n+ 1 ≤ r, s, t, . . . ≤ n+ 2.

Let M be an oriented n–dimensional submanifold in an (n+ 2)–dimensional
pseudo–Euclidean space En+2

2 . We denote the Levi–Civita connections of En+2
2

and M respectively, by ∇̃ and∇. Then, we choose an oriented local orthonormal
frame {e1, . . . , en+2} on M with εA = 〈eA, eA〉 = ±1 such that e1, . . . , en are
tangent to M and en+1, en+2 are normal to M in En+2

2 . Denote the dual frame
and connection forms associated to {e1, . . . , en+2} by {ω1, . . . , ωn+2} and ωAB ,
respectively.

The Gauss and Weingarten formulas are given, respectively, by

∇̃ekei =

n∑
j=1

εjωij(ek)ej +

n+2∑
r=n+1

εrh
r
iker,

∇̃eker =−Ar(ek) +

n+2∑
s=n+1

εsωrs(ek)es,
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where hrij is the coefficients of the second fundamental form h, and Ar the
Weingarten map in the direction er.

The mean curvature vector H and the scalar curvature S of M in En+2
2 are

defined, respectively, by

H =
1

n

n+2∑
r=n+1

εrtrArer, (2.1)

S = n2〈H,H〉 − ‖h‖2, (2.2)

where ‖h‖2 =
∑n
i,j=1

∑n+2
r=n+1 εiεjεr(h

r
ij)

2. A submanifold M is called mini-
mal if H vanishes identically and a non–minimal submanifold is called pseudo–
umbilical if there exist a smooth function ρ such that AH = ρI, where I is an
identity n × n matrix and ρ is a smooth function on M . In particular, the
Gaussian curvature K which is also defined by K = ε3detA3 + ε4detA4 is half
of the scalar curvature S for n = 2. If K vanishes identically, the surface M is
called flat.

The Codazzi equations of M in En+2
2 are given by

hrij,k = hrjk,i,

hrjk,i = ei(h
r
jk) +

n+2∑
s=n+1

εsh
s
jkωsr(ei)−

n∑
`=1

ε`
(
ωj`(ei)h

r
`k + ωk`(ei)h

r
`j

)
.

(2.3)

Also, from the Ricci equation of M in En+2
2 , we have

RD(ej , ek; er, es) = 〈[Aer , Aes ](ej), ek〉 =

n∑
i=1

εi
(
hrikh

s
ij − hrijhsik

)
, (2.4)

where RD is the normal curvature tensor.

The gradient of a smooth function f on M is defined by ∇f =
n∑
i=1

εiei(f)ei,

and the Laplace operator acting on M is ∆ =
n∑
i=1

εi(∇eiei − eiei).

2.2 Gauss Map

Let G(m− n,m) be the Grassmannian manifold consisting of all oriented (m−
n)–planes through the origin of a pseudo–Euclidean space Emt with index t,
and let

∧m−n Emt be the vector space obtained by the exterior product of m−
n vectors in Emt . Let fi1 ∧ · · · ∧ fim−n and gi1 ∧ · · · ∧ gim−n be two vectors

in
∧m−n Emt , where {f1, f2, . . . , fm} and {g1, g2, . . . , gm} are two orthonormal

bases of Emt . Define an indefinite inner product 〈〈, 〉〉 on
∧m−n Emt by

〈〈fi1 ∧ · · · ∧ fim−n , gi1 ∧ · · · ∧ gim−n〉〉 = det(〈fi` , gjk〉). (2.5)

Therefore, for some positive integer s, we may identify
∧m−n Emt with some

pseudo–Euclidean space ENs , where N =
(
m

m−n
)
. The map ν : M → G(m −
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n,m) ⊂ ENs from an oriented pseudo–Riemannian submanifold M into G(m −
n,m) defined by

ν(p) = (en+1 ∧ en+2 ∧ · · · ∧ em)(p) (2.6)

is called the Gauss map of M which assigns to a point p in M the oriented
(m− n)–plane through the origin of Emt and parallel to the normal space of M
at p, [17].

We put ε = 〈〈ν, ν〉〉 = εn+1εn+2 · · · εm = ±1 and

M̃N−1
s (ε) =

{
SN−1
s (1) in ENs if ε = 1

HN−1
s−1 (−1) in ENs if ε = −1.

Then the Gauss image ν(M) can be viewed as ν(M) ⊂ M̃N−1
s (ε).

Lemma 2.1. Let M be an n–dimensional submanifold of a pseudo–Euclidean
space En+2

t . Then, the Laplacian of the Gauss map ν = en+1 ∧ en+2 is given by

∆ν =||h||2ν + 2
∑
j<k

εjεkR
D(ej , ek; en+1, en+2)ej ∧ ek

+∇(trAn+1) ∧ en+2 + en+1 ∧∇(trAn+2)

+ n

n∑
j=1

εjω(n+1)(n+2)(ej)H ∧ ej ,

(2.7)

where ||h||2 is the squared length of the second fundamental form, RD the normal
curvature tensor, and ∇(trAr) the gradient of trAr.

Let M be a surface in the pseudo–Euclidean space E4
2. We choose a local

orthonormal frame field {e1, e2, e3, e4} on M such that e1, e2 are tangent to M ,

and e3, e4 are normal to M . Let C be a vector field in
∧2 E4

2 ≡ E6
4. Since the

set {eA ∧ eB |1 ≤ A < B ≤ 4} is an orthonormal basis for E6
4, the vector C can

be expressed as

C =
∑

1≤A<B≤4

εAεBCAB eA ∧ eB , (2.8)

where CAB = 〈〈C, eA ∧ eB〉〉.

Lemma 2.2. A vector C in Λ2E4
2 ≡ E6

4 written by (2.8) is constant if and only
if the following equations are satisfied for i = 1, 2

ei (C12) =ε3h
3
i2C13 + ε4h

4
i2C14 − ε3h

3
i1C23 − ε4h

4
i1C24, (2.9)

ei (C13) =− ε2h
3
i2C12 + ε4ω34(ei)C14 + ε2ω12(ei)C23 − ε4h

4
i1C34, (2.10)

ei (C14) =− ε2h
4
i2C12 − ε3ω34(ei)C13 + ε2ω12(ei)C24 + ε3h

3
i1C34, (2.11)

ei (C23) =ε1h
3
i1C12 − ε1ω12(ei)C13 + ε4ω34(ei)C24 − ε4h

4
i2C34, (2.12)

ei (C24) =ε1h
4
i1C12 − ε1ω12(ei)C14 − ε3ω34(ei)C23 + ε3h

3
i2C34, (2.13)

ei (C34) =ε1h
4
i1C13 − ε1h

3
i1C14 + ε2h

4
i2C23 − ε2h

3
i2C24. (2.14)
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3 Rotational Surfaces in E4
2

In this section, we focus on rotational surfaces in E4
2 with profile curves which lie

in 2–dimensional planes, and we obtain some geometric quantities about these
surfaces.

Let M1(b) and M2(b) be rotational surfaces in the pseudo–Euclidean space
E4

2 whose profile curves lie in 2–planes. These rotational surfaces defined below
are invariant under some rotation subgroup of rotation group in E4

2. We can
choose a profile curve α of M1(b) in the yw–plane as α(u) = (0, y(u), 0, w(u)),
defined on an open subset I of R and thus the parametrization of M1(b) is given
by

M1(b) : r1(u, v) = (w(u) sinh v, y(u) cosh(bv), y(u) sinh(bv), w(u) cosh v) (3.1)

with some constant b > 0, where u ∈ I is an open subset of R and v ∈ R.
We consider the following orthonormal moving frame field e1, e2, e3, e4 on

M1(b) in E4
2 such that e1, e2 are tangent to M1(b), and e3, e4 are normal to

M1(b):

e1 =
1

q

∂

∂v
, e2 =

1

A

∂

∂u
, (3.2)

e3 =
1

A
(y′(u) sinh v, w′(u) cosh(bv), w′(u) sinh(bv), y′(u) cosh v), (3.3)

e4 = −εε
∗

q
(by(u) cosh v, w(u) sinh(bv), w(u) cosh(bv), by(u) sinh v), (3.4)

where A =
√
ε(y′2(u)− w′2(u)) 6= 0, q =

√
ε∗(w2(u)− b2y2(u)) 6= 0, and

ε = sgn(y′
2
(u)− w′2(u)), ε∗ = sgn(w2(u)−b2y2(u)). Then ε1 = −ε4 = ε∗, ε2 =

−ε3 = ε.
By a direct calculation, we have the components of the second fundamental

form and the connection forms as

h3
11 =

1

Aq2
(b2y(u)w′(u)− w(u)y′(u)), h3

22 =
1

A3
(w′(u)y′′(u)− y′(u)w′′(u)),

(3.5)

h4
12 =

εε∗b

Aq2
(w(u)y′(u)− y(u)w′(u)), h3

12 = h4
11 = h4

22 = 0, (3.6)

ω12(e1) =
1

Aq2
(b2y(u)y′(u)− w(u)w′(u)), ω12(e2) = 0, (3.7)

ω34(e1) =
εε∗b

Aq2
(w(u)w′(u)− y(u)y′(u)), ω34(e2) = 0. (3.8)

For the rotational surface M2(b), we can choose a profile curve β in the xz–
plane as β(u) = (x(u), 0, z(u), 0) defined on an open subset I of R, and thus the
parametrization of M2(b) is given by

M2(b) : r2(u, v) = (x(u) cos v, x(u) sin v, z(u) cos(bv), z(u) sin(bv)) (3.9)
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with some constant b > 0, where u ∈ I is an open subset of R and v ∈ (0, 2π).
We consider the following orthonormal moving frame fields e1, e2, e3, e4 on

M2(b) in E4
2 such that e1, e2 are tangent to M2(b), and e3, e4 are normal to

M2(b):

e1 =
1

q̄

∂

∂v
, e2 =

1

Ā

∂

∂u
, (3.10)

e3 =
1

Ā
(z′(u) cos v, z′(u) sin v, x′(u) cos(bv), x′(u) sin(bv)), (3.11)

e4 = −εε
∗

q̄
(bz(u) sin v,−bz(u) cos v, x(u) sin(bv),−x(u) cos(bv)), (3.12)

where Ā =
√
ε(x′2(u)− z′2(u)) 6= 0, q̄ =

√
ε∗(x2(u)− b2z2(u)) 6= 0, and ε =

sgn(x′
2
(u)− z′2(u)), ε∗ = sgn(x2(u) − b2z2(u)). Then ε1 = −ε4 = ε∗, ε2 =

−ε3 = ε.
By a direct computation, we have the components of the second fundamental

form and the connection forms as

h3
11 =

1

Āq̄2
(b2z(u)x′(u)− x(u)z′(u)), h3

22 =
1

Ā3
(z′(u)x′′(u)− x′(u)z′′(u)),

(3.13)

h4
12 =

εε∗b

Āq̄2
(z(u)x′(u)− x(u)z′(u)), h3

12 = h4
11 = h4

22 = 0, (3.14)

ω12(e1) =
1

Āq̄2
(b2z(u)z′(u)− x(u)x′(u)), ω12(e2) = 0, (3.15)

ω34(e1) =
εε∗b

Āq̄2
(z(u)z′(u)− x(u)x′(u)), ω34(e2) = 0. (3.16)

Therefore, we have the mean curvature vector H, Gaussian curvature K and
normal curvature RD for the rotational surfaces for M1(b) and M2(b) as follows

H = −1

2
(εε∗h3

11 + h3
22)e3, (3.17)

K = ε∗(h4
12)2 − εh3

11h
3
22, (3.18)

RD(e1, e2; e3, e4) = h4
12(εh3

22 − ε∗h3
11). (3.19)

On the other hand, by using the Codazzi equation (2.3) we obtain

e2(h3
11) = ε∗h4

12ω34(e1) + ω12(e1)(ε∗h3
11 − εh3

22), (3.20)

e2(h4
12) = −εh3

22ω34(e1) + 2ε∗h4
12ω12(e1). (3.21)

The rotational surfaces M1(b) and M2(b) defined by (3.1) and (3.9) for b = 1,
x(u) = y(u) = f(u) sinhu and z(u) = w(u) = f(u) coshu are also known as
Vranceanu rotational surface, where f(u) is a smooth function, [15, 17].
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4 Pseudo–Umbilical Rotational
Surfaces in E4

2

In this section, we obtain all pseudo–umbilical rotational surfaces M1(b) and
M2(b) in E4

2 defined by (3.1) and (3.9).
By the definition of pseudo–umbilical surface and (3.17), the rotational sur-

faces M1(b) and M2(b) are pseudo–umbilical if and only if ε∗h3
11 = εh3

22.
Hence, from (3.5) the surface M1(b) is pseudo–umbilical if and only if the

component functions y(u) and w(u) of the profile curve α satisfy the following
differential equation

w′(u)y′′(u)−y′(u)w′′(u)−(y′
2
(u)−w′2(u))

b2y(u)w′(u)− w(u)y′(u)

w2(u)− b2y2(u)
= 0. (4.1)

By a simple computation, it can be shown that a non–planar rotational
surface M1(b) in E4

2 defined by (3.1) for b = 1 is pseudo–umbilical if and only if
its profile curve is given by

w(u) + y(u) = λ0(w(u)− y(u))µ0 (4.2)

for some constants λ0 6= 0 and µ0 such that (w(u)− y(u))µ0 is real valued.
If µ0 = 1 and λ2

0 6= 1, from (4.2) we have y(u) = λ0−1
λ0+1w(u), that is, the

profile curve α is a part of line passing through the origin. It can be shown
easily that M1(1) is an open part of a timelike plane in E4

2.
If µ0 = −1, then (4.2) implies that w2(u) − y2(u) = λ0 which gives (a–5)

and (a–6) in Theorem 4.2 for b = 1.
From equations (3.5), (3.6) we obtain h4

12 = −εε∗h3
11 in the case b = 1. Also,

we know that such a relation ε∗h3
11 = εh3

22 exists. Hence, from the equation
(3.18) we conclude:

Proposition 4.1. Let M1(1) be a rotational surface in E4
2 given by (3.1). Then,

M1(1) is pseudo–umbilical if and only if M1(1) is flat.

In [17], flat Vranceanu surfaces which are pseudo–umbilical surfaces M1(1)
were studied for different purposes. It was proven that the Vranceanu rotational
surface is flat if f(u) = λeµu, where λ and µ are real numbers. Then, we have
ε∗ = sgn(λ2e2µu) = 1 and ε = sgn(λ2(1−µ2)e2µu) = 1 for |µ| < 1 and ε = −1 for
|µ| > 1. Thus, the Vranceanu rotational surface is spacelike pseudo–umbilical
for |µ| < 1 and timelike pseudo–umbilical for |µ| > 1.

For c0 6= 0 and θ > 0, we define the following functions

Φ(θ, b, ε, ε∗) =

∫ θ

0

√
ε∗c20(sinh2 η − b2 cosh2 η)

ε∗c20(sinh2 η − b2 cosh2 η)− ε
dη (4.3)

and

Ω(θ, b, ε, ε∗) =

∫ θ

0

√
ε∗c20(cosh2 η − b2 sinh2 η)

ε∗c20(cosh2 η − b2 sinh2 η) + ε
dη. (4.4)

such that the integrands are real valued functions.
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Theorem 4.2. Let M1(b) be a non–planar rotational surface in the pseudo–
Euclidean space E4

2 given by (3.1). Then,

(a) M1(b) is a spacelike pseudo–umbilical surface in E4
2 if and only if the com-

ponent functions of the unit speed profile curve α of M1(b) are given by
one of the followings:

(a-1)
y(θ) = ceψ(θ) cosh θ and w(θ) = ceψ(θ) sinh θ,

where ψ(θ) = Φ(θ, b, 1, 1), 0 < b < 1 and c20(sinh2 θ − b2 cosh2 θ) > 1 for
some c0 ∈ R and c ∈ R+;

(a-2)
y(θ) = ceψ(θ) cosh θ and w(θ) = ceψ(θ) sinh θ,

where ψ(θ) = Φ(θ, b,−1,−1), b ≥ 1 and c ∈ R+. In this case, the surface
M1(b) has negative definite metric;

(a-3)
y(θ) = ceϕ(θ) sinh θ and w(θ) = ceϕ(θ) cosh θ,

where ϕ(θ) = Ω(θ, b, 1, 1), 0 < b ≤ 1 and c ∈ R+;

(a-4)
y(θ) = ceϕ(θ) sinh θ and w(θ) = ceϕ(θ) cosh θ,

where ϕ(θ) = Ω(θ, b,−1,−1), b > 1 and c20(b2 sinh2 θ − cosh2 θ) > 1 for
some c0 ∈ R and c ∈ R+. In this case, the surface M1(b) has negative
definite metric;

(a-5)
y(θ) = r0 sinh θ and w(θ) = r0 cosh θ,

where r0 is non–zero constant and 0 < b ≤ 1. In this case, the surface
M1(b) lies in H3

1(−r−2
0 ) ⊂ E4

2;

(a-6)
y(θ) = r0 cosh θ and w(θ) = r0 sinh θ,

where r0 is non–zero constant and b ≥ 1. In this case, the surface M1(b)
has negative definite metric and is lying in S3

2(r−2
0 ) ⊂ E4

2.

(b) M1(b) is a timelike pseudo–umbilical surface in E4
2 if and only if the com-

ponent functions of the unit speed profile curve α of M1(b) are given by
one of the followings:

(b-1)
y(θ) = ceψ(θ) cosh θ and w(θ) = ceψ(θ) sinh θ,

where ψ(θ) = Φ(θ, b, 1,−1), b ≥ 1 and c20(b2 cosh2 θ−sinh2 θ) > 1 for some
c0 ∈ R and c ∈ R+;

(b-2)
y(θ) = ceψ(θ) cosh θ and w(θ) = ceψ(θ) sinh θ,
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where ψ(θ) = Φ(θ, b,−1, 1), 0 < b < 1 and c ∈ R+;

(b-3)
y(θ) = ceϕ(θ) sinh θ and w(θ) = ceϕ(θ) cosh θ,

where ϕ(θ) = Ω(θ, b, 1,−1), b > 1 and c ∈ R+;

(b-4)
y(θ) = ceϕ(θ) sinh θ and w(θ) = ceϕ(θ) cosh θ,

where ϕ(θ) = Ω(θ, b,−1, 1), 0 < b ≤ 1 and c20(cosh2 θ − b2 sinh2 θ) > 1 for
some c0 ∈ R and c ∈ R+;

(b-5)
y(θ) = r0 sinh θ and w(θ) = r0 cosh θ,

where r0 is non–zero constant and b > 1. In this case, the surface M1(b)
lies in H3

1(−r−2
0 ) ⊂ E4

2;

(b-6)
y(θ) = r0 cosh θ and w(θ) = r0 sinh θ,

where r0 is non–zero constant and 0 < b < 1. In this case, the surface
M1(b) lies in S3

2(r−2
0 ) ⊂ E4

2.

Proof. Let M1(b) be a rotational surface in the pseudo–Euclidean space E4
2 given

by (3.1). From (3.7) and (3.8), it is seen that ω12(e1) and ω34(e1) are functions
of u, and ω12(e2) = ω34(e2) = 0. By using these facts and (3.19), we have

−e2(ω34(e1)) + ε∗ω12(e1)ω34(e1) = h4
12(εh3

22 − ε∗h3
11). (4.5)

Now, assume that M1(b) is pseudo-umbilical surface, i.e., ε∗h3
11 = εh3

22. Then
(4.5) implies

e2(ω34(e1))− ε∗ω12(e1)ω34(e1) = 0. (4.6)

This equation together with the second equation in (3.2) and the first equation
in (3.7) gives

d

du
(ω34(e1)) = −w(u)w′(u)− b2y(u)y′(u)

w2(u)− b2y2(u)
ω34(e1). (4.7)

It is clear that ω34(e1) = 0 is a solution of (4.7). In this case, from (3.8)
we have w(u)w′(u)− y(u)y′(u) = 0 which implies that w2(u)− y2(u) = λ0, for
non–zero constant λ0.

For λ0 = r2
0 > 0, we put y(u) = r0 sinh θ(u) and w(u) = r0 cosh θ(u), where

θ(u) is a smooth function with θ′(u) 6= 0. So, ε = sgn(r2
0θ
′2(u)) = 1 and

ε∗ = sgn(r2
0(cosh2 θ(u) − b2 sinh2 θ(u))) = 1 for 0 < b ≤ 1 and ε∗ = −1 for

b > 1. Therefore, for 0 < b ≤ 1, M1(b) is a spacelike pseudo-umbilical surface
which gives (a–5), and for b > 1, M1(b) is a timelike pseudo-umbilical surface
which gives (b–5). Moreover, M1(b) lies in H3

1(−r0
−2) ⊂ E4

2.
For λ0 = −r2

0 < 0, we put y(u) = r0 cosh θ(u) and w(u) = r0 sinh θ(u),

where θ(u) is a smooth function with θ′(u) 6= 0. So ε = sgn(−r2
0θ
′2(u)) = −1,
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and ε∗ = sgn(r2
0(sinh2 θ(u) − b2 cosh2 θ(u))) = −1 for b ≥ 1 and ε∗ = 1 for

0 < b < 1. Then, for b ≥ 1, M1(b) is a spacelike pseudo-umbilical surface
with negative definite metric which gives (a–6), and for 0 < b < 1, M1(b) is
a timelike pseudo-umbilical surface which gives (b–6). Moreover, M1(b) lies in
S3

2(r0
−2) ⊂ E4

2.
Let ω34 6= 0 on M1. By combining (3.8) and (4.7) we have

εε∗b(w(u)w′(u)− y(u)y′(u))√
ε∗(w2(u)− b2y2(u))

√
ε(y′2(u)− w′2(u))

= b0 (4.8)

for some constant b0 6= 0.
Now we suppose that the profile curve α is a unit speed curve, that is,

y′
2
(u)− w′2(u) = ε. Thus equation (4.8) becomes

w(u)w′(u)− y(u)y′(u)√
ε∗(w2(u)− b2y2(u))

= c0 (4.9)

for some constant c0 6= 0.
Without loss of generality, firstly we choose y(u) = r(u) cosh θ(u) and w(u) =

r(u) sinh θ(u). Then, from y′
2
(u)− w′2(u) = ε and (4.9) we have, respectively,

εdu2 = dr2 − r2dθ2 and du = − dr

c0

√
ε∗(sinh2 θ − b2 cosh2 θ)

from which we obtain that

dr

r
=

√
ε∗c20(sinh2 θ − b2 cosh2 θ)

ε∗c20(sinh2 θ − b2 cosh2 θ)− ε
dθ, (4.10)

where ε∗c20(sinh2 θ − b2 cosh2 θ) > ε. The integration of (4.10) gives

r(θ) = ceΦ(θ,b,ε,ε∗), (4.11)

where Φ(θ, b, ε, ε∗) is defined by (4.3) and c ∈ R+. From ε∗ = sgn(r2(u)(sinh2 θ(u)−
b2 cosh2 θ(u))), we get ε∗ = 1 for 0 < b < 1, and ε∗ = −1 for b ≥ 1. Now, by
(4.11) and (4.3) we have (a–1) if ε = ε∗ = 1, and the integrand in (4.11) is defined
for c20(sinh2 θ − b2 cosh2 θ) > 1 for some c0 ∈ R; (a–2) if ε = ε∗ = −1; (b–1) if
ε = −ε∗ = 1, and the integrand in (4.3) is defined for c20(b2 cosh2 θ−sinh2 θ) > 1
for some c0 ∈ R; (b–2) if ε∗ = −ε = 1..

Secondly, let y(u) = r(u) sinh θ(u) and w(u) = r(u) cosh θ(u). By a similar
calculation we obtain that

r(θ) = ceΩ(θ,b,ε,ε∗), (4.12)

where Ω(θ, b, ε, ε∗) is defined by (4.4) and c ∈ R+. From ε∗ = sgn(r2(u)(cosh2 θ(u)−
b2 sinh2 θ(u))) we get ε∗ = 1 for 0 < b ≤ 1, and ε∗ = −1 for b > 1. Now by con-
sidering (4.12) and (4.4) we have (a–3) if ε = ε∗ = 1, and (a–4) if ε = ε∗ = −1
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and the integrand in (4.4) is defined for c20(b2 sinh2 θ − cosh2 θ) > 1 for some
c0 ∈ R; (b–3) if ε = −ε∗ = 1, and (b–4) if ε∗ = −ε = 1 and the integrand in
(4.4) is defined for c20(cosh2 θ − b2 sinh2 θ) > 1 for some c0 ∈ R.

Conversely, we assume that y(θ) and w(θ) are given by y(θ) = ceΦ(θ,b,ε,ε∗) cosh θ
and w(θ) = ceΦ(θ,b,ε,ε∗) sinh θ for the function Φ defined by (4.3). Since y(θ) and
w(θ) satisfy (4.6), equation (4.5) implies that either h4

12 = 0 or ε∗h3
11 = εh3

22.
From the first equation in (3.6) we have h4

12 6= 0 as dθ
du 6= 0, and thus ε∗h3

11 =

εh3
22. In the case, the profile curve α given by y(θ) = ceΩ(θ,b,ε,ε∗) sinh θ and

w(θ) = ceΩ(θ,b,ε,ε∗) cosh θ for the function Ω defined by (4.4), by a similar argu-
ment it can be seen that ε∗h3

11 = εh3
22. Therefore M1(b) is a pseudo–umbilical

surface in the pseudo–Euclidean space E4
2.

Similarly, we determine pseudo–umbilical rotational surface M2(b) in E4
2

given by (3.9). From (3.13), the surface M2(b) is pseudo–umbilical if and only
if the component functions x(u) and z(u) of the profile curve β satisfy the
differential equation

z′(u)x′′(u)−x′(u)z′′(u)− (x′
2
(u)− z′2(u))

b2z(u)x′(u)− x(u)z′(u)

x2(u)− b2z2(u)
= 0. (4.13)

By a simple computation, it can be shown that a non–planar rotational
surface M2(b) in E4

2 defined by (3.9) for b = 1 is pseudo–umbilical if and only if
its profile curve is given by

z(u)− x(u) = λ0(z(u) + x(u))µ0 (4.14)

for some constants λ0 6= 0 and µ0 such that (z(u) + x(u))µ0 is real valued.
If µ0 = 1 and λ2

0 6= 1, from (4.14) we have x(u) = 1−λ0

1+λ0
z(u), that is the

profile curve β is a part of a line passing through the origin. It can be shown
easily that M2(1) is an open part of a spacelike plane in E4

2.
If µ0 = −1, then (4.14) implies that z2(u) − x2(u) = λ0 which gives (b–5)

and (b–6) in Theorem 4.4 for b = 1.
Because of the similar reason for the rotational surface M1(b), we have the

following:

Proposition 4.3. Let M2(1) be a rotational surface in E4
2 given by (3.9). Then,

M2(1) is pseudo–umbilical if and only if M2(1) is flat.

In [17], it was shown that the Vranceanu rotational surface is flat if f(u) =
λeµu, where λ and µ are real numbers. For the function f(u), the component
function x(u) and z(u) satisfy the solution (4.14). Moreover, ε∗ = sgn(−λ2e2µu) =
−1 and ε = sgn(λ2(1− µ2)e2µu) = 1 for |µ| < 1, and ε = −1 for |µ| > 1. Thus,
the Vranceanu rotational surface is timelike pseudo–umbilical for |µ| < 1 and it
is spacelike pseudo–umbilical with negative definite metric for |µ| > 1.

We omit the proof of the next theorem because it is similar to the proof of
Theorem 4.4.
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For c̄0 6= 0 and θ > 0 let us define the following functions

Φ̄(θ, b, ε, ε∗) =

∫ θ

0

√
ε∗c̄02(cosh2 η − b2 sinh2 η)

ε∗c̄02(cosh2 η − b2 sinh2 η)− ε
dη (4.15)

and

Ω̄(θ, b, ε, ε∗) =

∫ θ

0

√
ε∗c̄02(sinh2 η − b2 cosh2 η)

ε∗c̄02(sinh2 η − b2 cosh2 η) + ε
dη. (4.16)

such that the integrands are real valued functions.

Theorem 4.4. Let M2(b) be a non–planar rotational surface in the pseudo–
Euclidean space E4

2 given by (3.9). Then,

(a) M2(b) is a spacelike pseudo–umbilical surface in E4
2 if and only if the com-

ponent functions of the unit speed profile curve β of M2(b) are given by
one of the followings:

(a-1)
x(θ) = c̄eψ(θ) cosh θ and z(θ) = c̄eψ(θ) sinh θ,

where ψ(θ) = Φ̄(θ, b, 1, 1), 0 < b ≤ 1 and c̄0
2(cosh2 θ − b2 sinh2 θ) > 1 for

some c̄0 ∈ R and c̄ ∈ R+;

(a-2)
x(θ) = c̄eψ(θ) cosh θ and z(θ) = c̄eψ(θ) sinh θ,

where ψ(θ) = Φ̄(θ, b,−1,−1), b > 1 and c̄ ∈ R+. In this case, the surface
M2(b) has negative definite metric;

(a-3)
x(θ) = c̄eϕ(θ) sinh θ and z(θ) = c̄eϕ(θ) cosh θ,

where ϕ(θ) = Ω̄(θ, b, 1, 1), 0 < b < 1 and c̄ ∈ R+;

(a-4)
x(θ) = c̄eϕ(θ) sinh θ and z(θ) = c̄eϕ(θ) cosh θ,

where ϕ(θ) = Ω̄(θ, b,−1,−1), b ≥ 1 and c̄0
2(b2 cosh2 θ − sinh2 θ) > 1 for

some c̄0 ∈ R and c̄ ∈ R+. In this case, the surface M2(b) has negative
definite metric;

(a-5)
x(θ) = r0 sinh θ and z(θ) = r0 cosh θ,

where r0 is non–zero constant and 0 < b < 1. In this case, the surface
M2(b) lies in H3

1(−r−2
0 ) ⊂ E4

2;

(a-6)
x(θ) = r0 cosh θ and z(θ) = r0 sinh θ,

where r0 is non–zero constant and b > 1. In this case, the surface M2(b)
is lying in S3

2(r−2
0 ) ⊂ E4

2 with negative definite metric.
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(b) M2(b) is a timelike pseudo–umbilical surface in E4
2 if and only if the com-

ponent functions of the unit speed profile curve β of M2(b) are given by
one of the followings:

(b-1)
x(θ) = c̄eψ(θ) cosh θ and z(θ) = c̄eψ(θ) sinh θ,

where ψ(θ) = Φ̄(θ, b, 1,−1), b > 1 and c̄0
2(b2 sinh2 θ − cosh2 θ) > 1 for

some c̄0 ∈ R and c̄ ∈ R+;

(b-2)
x(θ) = c̄eψ(θ) cosh θ and z(θ) = c̄eψ(θ) sinh θ,

where ψ(θ) = Φ̄(θ, b,−1, 1), 0 < b ≤ 1 and c̄ ∈ R+;

(b-3)
x(θ) = c̄eϕ(θ) sinh θ and z(θ) = c̄eϕ(θ) cosh θ,

where ϕ(θ) = Ω̄(θ, b, 1,−1), b ≥ 1 and c̄ ∈ R+;

(b-4)
x(θ) = c̄eϕ(θ) sinh θ and z(θ) = c̄eϕ(θ) cosh θ,

where ϕ(θ) = Ω̄(θ, b,−1, 1), 0 < b < 1 and c̄0
2(sinh2 θ − b2 cosh2 θ) > 1

for some c̄0 ∈ R and c̄ ∈ R+;

(b-5)
x(θ) = r0 sinh θ and z(θ) = r0 cosh θ,

where r0 is non–zero constant and b ≥ 1. In this case, the surface M2(b)
lies in H3

1(−r−2
0 ) ⊂ E4

2;

(b-6)
x(θ) = r0 cosh θ and z(θ) = r0 sinh θ,

where r0 is non–zero constant and 0 < b ≤ 1. In this case, the surface
M2(b) lies in S3

2(r−2
0 ) ⊂ E4

2.

5 Pseudo–Umbilical Rotational
Surfaces with Pointwise 1–Type

Gauss Map

In this section, we determine pseudo–umbilical rotational surfaces in E4
2 with

pointwise 1–type Gauss map of first kind and second kind.

Theorem 5.1. There exists no pseudo–umbilical rotational surface defined by
(3.1) in E4

2 with pointwise 1–type Gauss map of the second kind.
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Proof. Assume that M1(b) is a non–planar regular pseudo–umbilical rotational
surface in E4

2 defined by (3.1). From equation (2.7), the Laplacian of the Gauss
map of the rotational surface M1(b) is given by

∆ν =||h||2ν + 2h4
12(ε∗h3

22 − εh3
11)e1 ∧ e2

+ ω34(e1)(εh3
11 + ε∗h3

22)e1 ∧ e3 + (εε∗e2(h3
11) + e2(h3

22))e2 ∧ e4. (5.1)

Since ε∗h3
11 = εh3

22, equation (5.1) becomes

∆ν = ‖h‖2ν + 2εh3
11ω34(e1)e1 ∧ e3 + 2εh4

12ω34(e1)e2 ∧ e4. (5.2)

Suppose that M1(b) has pointwise 1–type Gauss map of second kind. Comparing
(1.2) and (5.2), we get

f(1 + εε∗C34) = ||h||2, (5.3)

fC13 = −2ε∗h3
11ω34(e1), (5.4)

fC24 = −2ε∗h4
12ω34(e1), (5.5)

C12 = C14 = C23 = 0. (5.6)

From (5.4) and (5.5), we have

h4
12C13 − h3

11C24 = 0. (5.7)

When we write the equation (2.9) for i = 2, we obtain

h3
11C13 − h4

12C24 = 0. (5.8)

Since the Gauss map ν is of the second kind, equations (5.7) and (5.8) must
have non–zero solution which implies (h3

11)2 − (h4
12)2 = 0. Considering the first

equations in (3.5) and (3.6) we have (b2−1)(b2y2(u)w′
2
(u)−w2(u)y′2(u)) = 0. If

b2y2(u)w′
2
(u)−w2(u)y′2(u) = 0, by solving this equation and y′2(u)−w′2(u) =

εA2 together, we get

y′
2
(u) = −εε∗b2A

2

q2
y2(u) and w′

2
(u) = −εε∗A

2

q2
w2(u) (5.9)

where A =
√
ε(y′2(u)− w′2(u)) 6= 0 and q =

√
ε∗(w2(u)− b2y2(u)) 6= 0. Dif-

ferentiating equations in (5.9) with respect to u, we obtain

2y′(u)y′′(u) = −εε∗
(
A2

q2

)′
y2(u)− 2εε∗b2

A2

q2
y(u)y′(u),

2w′(u)w′′(u) = −εε∗
(
A2

q2

)′
w2(u)− 2εε∗b2

A2

q2
w(u)w′(u). (5.10)

If we multiply these equations by −w′2(u) and y′
2
(u), respectively, add them

and also consider b2y2(u)w′
2
(u)− w2(u)y′2(u) = 0, we get

y′(u)w′(u)

(
y′(u)w′′(u)− w′(u)y′′(u)− εε∗

(
A2

q2

)
(y(u)w′(u)− w(u)y′(u))

)
= 0.
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If y = y0 = constant or w = w0 = constant on an open subinterval of I, then
M1(b) is a planar rotational surface. So, there is an open subinterval J ⊂ I on
which y′(u)w′(u) 6= 0, that is,

y′(u)w′′(u)− w′(u)y′′(u)− εε∗A
2

q2
(b2y(u)w′(u)− w(u)y′(u)) = 0.

Using (3.5) in the equation given above, we get εε∗h3
11 + h3

22 = 0. On the
other hand, from the equation (3.17), M1(b) has zero mean curvature vector in
E4

2. That is contradiction to the definition of pseudo–umbilical surface. Thus,

b2y2(u)w′
2
(u)−w2(u)y′2(u) 6= 0, that is, b = 1. In this case, h4

12 = −εε∗h3
11 and

ω34(e1) = −εε∗ω12(e1). Thus, from the equation (5.7) C13 = −εε∗C24. Also,
C34 is zero due to equations (2.10) and (2.13) for i = 2. On the other hand,
from (2.11) for i = 1 we have ω34(e1) = 0 which is a contradiction. Thus, ν is
not of pointwise 1–type of second kind.

Note that if ν were pointwise 1–type of first kind, it would happen that from
(5.4) and (5.5) h3

11 = h4
12 = 0 or ω34(e1) = 0.

In the case h3
11 = h4

12 = 0, M1(b) lies in the 3–dimensional Euclidean or
pseudo–Euclidean space. Thus, we omit this case.

For ω34(e1) = 0, we obtained some class of rotational surfaces as seen in the
proof of Theorem 4.2. Thus, we conclude the following results:

Corollary 5.2. Let M1(b) be a non–planar pseudo–umbilical rotational surface
in the pseudo–Euclidean space E4

2 given by (3.1). Then, M1 has pointwise 1–
type Gauss map of the first kind if and only if the component functions of the
unit speed profile curve α of M1(b) are given by one of the followings:

i.
y(θ) = r0 sinh θ and w(θ) = r0 cosh θ,

where r0 is non–zero constant and 0 < b ≤ 1. In this case, M1(b) is a
spacelike surface in H3

1(−r−2
0 ) ⊂ E4

2;

ii.
y(θ) = r0 cosh θ and w(θ) = r0 sinh θ,

where r0 is non–zero constant and b ≥ 1. In this case, M1(b) is a spacalike
surface with negative definite metric in S3

2(r−2
0 ) ⊂ E4

2;

iii.
y(θ) = r0 sinh θ and w(θ) = r0 cosh θ,

where r0 is non–zero constant and b > 1. In this case, M1(b) is a timelike
surface in H3

1(−r−2
0 ) ⊂ E4

2;

iv.
y(θ) = r0 cosh θ and w(θ) = r0 sinh θ,

where r0 is non–zero constant and 0 < b < 1. In this case, M1(b) is a
timelike surface in S3

2(r−2
0 ) ⊂ E4

2.
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Similarly, we can give same results for the rotational surface M2(b) given by
(3.9).

Theorem 5.3. There exists no pseudo–umbilical rotational surface defined by
(3.9) in E4

2 with pointwise 1–type Gauss map of the second kind.

Corollary 5.4. Let M2(b) be a non–planar pseudo–umbilical rotational surface
in the pseudo–Euclidean space E4

2 given by (3.9). Then, M2 has pointwise 1–
type Gauss map of the first kind if and only if the component functions of the
unit speed profile curve β of M2(b) are given by one of the followings:

i.
x(θ) = r0 sinh θ and z(θ) = r0 cosh θ,

where r0 is non–zero constant and 0 < b < 1. In this case, M2(b) is a
spacelike surface lying in H3

1(−r−2
0 ) ⊂ E4

2;

ii.
x(θ) = r0 cosh θ and z(θ) = r0 sinh θ,

where r0 is non–zero constant and b > 1. In this case, M2(b) is a spacelike
surface lying in S3

2(r−2
0 ) ⊂ E4

2 with negative definite metric;

iii.
x(θ) = r0 sinh θ and z(θ) = r0 cosh θ,

where r0 is non–zero constant and b ≥ 1. In this case, M2(b) is a timelike
surface lying in H3

1(−r−2
0 ) ⊂ E4

2

iv.
x(θ) = r0 cosh θ and z(θ) = r0 sinh θ,

where r0 is non–zero constant and 0 < b ≤ 1. In this case, M2(b) is a
timelike surface lying in S3

2(r−2
0 ) ⊂ E4

2.
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Abstract. We construct a special class of Lorentz surfaces in the pseudo-
Euclidean 4-space with neutral metric which are one-parameter systems of
meridians of rotational hypersurfaces with lightlike axis and call them merid-
ian surfaces. We give the complete classification of the meridian surfaces
with constant Gauss curvature and prove that there are no meridian surfaces
with parallel mean curvature vector field other than CMC surfaces lying in a
hyperplane. We also classify the meridian surfaces with parallel normalized
mean curvature vector field. We show that in the family of the meridian
surfaces there exist Lorentz surfaces which have parallel normalized mean
curvature vector field but not parallel mean curvature vector.
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1 Introduction

A fundamental problem of the contemporary differential geometry of surfaces
and hypersurfaces in standard model spaces such as the Euclidean space En
and the pseudo-Euclidean space Enk is the investigation of the basic invariants
characterizing the surfaces. Curvature invariants are the number one Rieman-
nian invariants and the most natural ones. The basic intrinsic curvature invari-
ant of a surface in 4-dimensional Euclidean or pseudo-Euclidean space is the
Gauss curvature and one basic extrinsic invariant is the curvature of the normal
connection. The most important normal vector field of a surface is the mean
curvature vector field. So, a fundamental question is to investigate various im-
portant classes of surfaces characterized by conditions on the Gauss curvature,
the normal curvature, or the mean curvature vector field, and to find examples
of surfaces belonging to these classes.

Rotational surfaces and hypersurfaces are basic source of examples of many
geometric classes of surfaces in Riemannian and pseudo-Riemannian geometry.
The main purpose of this paper is to provide a comprehensive survey on a
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special class of surfaces (called meridian surfaces) in 4-dimensional Euclidean
or pseudo-Euclidean spaces which are one-parameter systems of meridians of
rotational hypersurfaces. We present briefly recent results on meridian surfaces
in the Euclidean space E4 and the Minkowski space E4

1.
In the present paper, the new contribution to the theory of meridian surfaces

is the construction of 2-dimensional Lorentz surfaces in the pseudo-Euclidean
space E4

2 which are one-parameter systems of meridians of a rotational hyper-
surface with lightlike axis. They are analogous to the meridian surfaces lying on
rotational hypersurfaces with spacelike or timelike axis in E4

2 which have been
studied in [3] and [4]. We show that all meridian surfaces are surfaces with flat
normal connection and classify completely the meridian surfaces with constant
Gauss curvature (Theorem 4.1 and Theorem 4.2). In Theorem 5.1 we give the
classification of the meridian surfaces with parallel mean curvature vector field
H. Theorem 6.1 describes all meridian surfaces which have parallel normalized
mean curvature vector field but not parallel H.

2 Preliminaries

Let E4
2 be the 4-dimensional pseudo-Euclidean space with the canonical pseudo-

Euclidean metric of index 2 given in local coordinates by

g̃ = dx21 + dx22 − dx23 − dx24,

where (x1, x2, x3, x4) is a rectangular coordinate system of E4
2. Denote by 〈., .〉

the indefinite inner scalar product associated with g̃. Since g̃ is an indefinite
metric, a vector v ∈ E4

2 can have one of the three casual characters: spacelike if
〈v, v〉 > 0 or v = 0, timelike if 〈v, v〉 < 0, and lightlike if 〈v, v〉 = 0 and v 6= 0.
This terminology is inspired by general relativity and the Minkowski 4-space
E4
1.

We use the following standard denotations:

S32(1) =
{
V ∈ E4

2 : 〈V, V 〉 = 1
}

;

H3
1(−1) =

{
V ∈ E4

2 : 〈V, V 〉 = −1
}
.

The space S32(1) is known as the de Sitter space, and the space H3
1(−1) is the

anti-de Sitter space [22].
A surface M in E4

2 is called Lorentz, if 〈., .〉 induces a Lorentzian metric g on
M , i.e. at each point p ∈M we have the following decomposition

E4
2 = TpM ⊕NpM

with the property that the restriction of the metric onto the tangent space TpM
is of signature (1, 1), and the restriction of the metric onto the normal space
NpM is of signature (1, 1).
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Denote by ∇ and ∇ the Levi-Civita connections of M and E4
2, respectively.

For any tangent vector fields X,Y and any normal vector field ξ, the Gauss
formula and the Weingarten formula are given by

∇XY = ∇XY + h(X,Y ),

∇Xξ = −AξX +DXξ,

where h is the second fundamental form of M , D is the normal connection on
the normal bundle, and Aξ is the shape operator with respect to ξ.

The mean curvature vector field H of M in E4
2 is defined as H =

1

2
trh. A

surface M is called minimal if its mean curvature vector vanishes identically,
i.e. H = 0. A natural extension of minimal surfaces are quasi-minimal surfaces.
A surface M is called quasi-minimal (or pseudo-minimal) if its mean curvature
vector is lightlike at each point, i.e. H 6= 0 and 〈H,H〉 = 0. In the Minkowski
space E4

1 the quasi-minimal surfaces are also called marginally trapped. This
notion is borrowed from general relativity. A surface M is said to have constant
mean curvature if 〈H,H〉 = const. We shall consider Lorentz surfaces in E4

2 for
which 〈H,H〉 = const 6= 0. Such surfaces we call CMC surfaces.

A normal vector field ξ on M is called parallel in the normal bundle (or
simply parallel) if Dξ = 0 holds identically [7]. A surface M is said to have
parallel mean curvature vector field if its mean curvature vector H satisfies
DH = 0.

Surfaces for which the mean curvature vector field H is non-zero, 〈H,H〉 6= 0,
and there exists a unit vector field H0 in the direction of the mean curvature
vector H, such that H0 is parallel in the normal bundle, are called surfaces with
parallel normalized mean curvature vector field [6]. It is easy to see that if M is
a surface with non-zero parallel mean curvature vector field H (i.e. DH = 0),
then M is a surface with parallel normalized mean curvature vector field, but
the converse is not true in general. It is true only for surfaces with ‖H‖ = const.

3 Construction of Meridian Surfaces

in Pseudo-Euclidean 4-Space

Meridian surfaces in the Euclidean 4-space E4 we defined in [15] as one-parameter
systems of meridians of the standard rotational hypersurface in E4. The classifi-
cation of meridian surfaces with constant Gauss curvature, with constant mean
curvature, Chen meridian surfaces and meridian surfaces with parallel normal
bundle is given in [15] and [17]. The meridian surfaces in E4 with pointwise
1-type Gauss map are classified in [1]. The idea from the Euclidean space is
used in [16], [18], and [19] for the construction of meridian spacelike surfaces
lying on rotational hypersurfaces in E4

1 with timelike, spacelike, or lightlike axis.
The classification of marginally trapped meridian surfaces is given in [16] and
[19]. Meridian surfaces in E4

1 with pointwise 1-type Gauss map are classified in
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[2]. The classification of meridian surfaces with constant Gauss curvature, with
constant mean curvature, Chen meridian surfaces and meridian surfaces with
parallel normal bundle is given in [18] and [20].

Following the idea from the Euclidean and Minkowski spaces, in [3] and [4]
we constructed Lorentz meridian surfaces in the pseudo-Euclidean 4-space E4

2

as one-parameter systems of meridians of rotational hypersurfaces with timelike
or spacelike axis. We gave the classification of quasi-minimal meridian surfaces
and meridian surfaces with constant mean curvature [3]. The classification of
meridian surfaces with parallel mean curvature vector field and the classification
of meridian surfaces with parallel normalized mean curvature vector is given in
[4].

In the present paper we construct Lorentz meridian surfaces in E4
2 which are

one-parameter systems of meridians of rotational hypersurfaces with lightlike
axis.

Let Oe1e2e3e4 be a fixed orthonormal coordinate system in E4
2, i.e. 〈e1, e1〉 =

〈e2, e2〉 = 1, 〈e3, e3〉 = 〈e4, e4〉 = −1. We denote ξ1 =
e2 + e4√

2
, ξ2 =

−e2 + e4√
2

and consider the pseudo-orthonormal base {e1, e3, ξ1, ξ2} of E4
2. Note that

〈ξ1, ξ1〉 = 0, 〈ξ2, ξ2〉 = 0, 〈ξ1, ξ2〉 = −1.
A rotational hypersurface with lightlike axis in E4

2 can be parametrized by

M : Z(u,w1, w2) = f(u)w1(coshw2e1+sinhw2e3)+(f(u)
(w1)2

2
+g(u))ξ1+f(u)ξ2,

where f = f(u), g = g(u) are smooth functions, defined in an interval I ⊂ R
and f(u) > 0, u ∈ I.

Let w1 = w1(v), w2 = w2(v), v ∈ J, J ⊂ R and consider the surfaceMm in
E4
2 given by

Mm : z(u, v) = Z(u,w1(v), w2(v)), (3.1)

where u ∈ I, v ∈ J. The surfaceMm, defined by (3.1), is a one-parameter system
of meridians of the rotational hypersurface M. So, we call Mm a meridian
surface on M.

Without loss of generality we can assume that w1 = ϕ(v), w2 = v. Then
the meridian surface Mm is parametrized as follows:

Mm : z(u, v) = f(u)(ϕ(v) cosh v e1 + ϕ(v) sinh v e3 +
ϕ2(v)

2
ξ1 + ξ2) + g(u) ξ1.

(3.2)

If we denote l(v) = ϕ(v) cosh v e1 + ϕ(v) sinh v e3 +
ϕ2(v)

2
ξ1 + ξ2, then the para-

metrization (3.2) is written as

Mm : z(u, v) = f(u) l(v) + g(u) ξ1.

Now we shall find the coefficients of the first fundamental form ofMm. The
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tangent vector fields zu and zv are

zu = f ′ϕ cosh v e1 + f ′ϕ sinh v e3 +

(
f ′
ϕ2

2
+ g′

)
ξ1 + f ′ ξ2;

zv = f(ϕ̇ cosh v + ϕ sinh v) e1 + f(ϕ̇ sinh v + ϕ cosh v) e3 + fϕϕ̇ ξ1,
(3.3)

where ϕ̇ denotes the derivative of ϕ with respect to v. So, the coefficients of the
first fundamental form are

E = −2f ′(u)g′(u); F = 0; G = f2(u)(ϕ̇2(v)− ϕ2(v)).

Since we are studying Lorentz surfaces, in the case ϕ̇2(v)−ϕ2(v) > 0 we assume
that f ′(u)g′(u) > 0; in the case ϕ̇2(v)−ϕ2(v) < 0 we assume that f ′(u)g′(u) < 0.

We shall consider the tangent frame field defined by X =
zu√

2εf ′g′
, Y =

zv

f
√
ε(ϕ̇2 − ϕ2)

, where ε = 1 in the case ϕ̇2 − ϕ2 > 0, f ′g′ > 0, and ε = −1

in the case ϕ̇2 − ϕ2 < 0, f ′g′ < 0. Thus we have 〈X,X〉 = −ε, 〈Y, Y 〉 = ε,
〈X,Y 〉 = 0. Let us choose the following normal frame field:

n1 =

√
εf ′

2g′

(
ϕ cosh v e1 + ϕ sinh v e3 +

f ′ϕ2 − 2g′

2f ′
ξ1 + ξ2

)
;

n2 =
1√

ε(ϕ̇2 − ϕ2)

(
(ϕ̇ sinh v + ϕ cosh v) e1 + (ϕ̇ cosh v + ϕ sinh v) e3 + ϕ2 ξ1

)
,

(3.4)
which satisfies 〈n1, n1〉 = ε, 〈n2, n2〉 = −ε, 〈n1, n2〉 = 0. Taking into account
(3.3), we calculate the second partial derivatives of z(u, v):

zuu = f ′′ϕ cosh v e1 + f ′′ϕ sinh v e3 +

(
f ′′
ϕ2

2
+ g′′

)
ξ1 + f ′′ ξ2;

zuv = f ′(ϕ̇ cosh v + ϕ sinh v) e1 + f ′(ϕ̇ sinh v + ϕ cosh v) e3 + f ′ϕϕ̇ ξ1;

zvv = f ((ϕ̈+ ϕ) cosh v + 2ϕ̇ sinh v) e1 + f ((ϕ̈+ ϕ) sinh v + 2ϕ̇ cosh v) e3

+f
(
ϕ̇2 + ϕϕ̈

)
ξ1.

The last equalities together with (3.4) imply

〈zuu, n1〉 =
f ′′g′ − g′′f ′√

2εf ′g′
; 〈zuu, n2〉 = 0;

〈zuv, n1〉 = 0; 〈zuv, n2〉 = 0;

〈zvv, n1〉 = −f

√
εf ′

2g′
(ϕ̇2 − ϕ2); 〈zvv, n2〉 = f

ϕϕ̈− 2ϕ̇2 + ϕ2√
ε(ϕ̇2 − ϕ2)

.
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Hence, we obtain

h(X,X) = ε
f ′′g′ − g′′f ′

(2εf ′g′)
3
2

n1;

h(X,Y ) = 0;

h(Y, Y ) = − 1

f

√
εf ′

2g′
n1 − ε

ϕϕ̈− 2ϕ̇2 + ϕ2

f(ε(ϕ̇2 − ϕ2))
3
2

n2.

(3.5)

Now, we shall consider the parametric lines of the meridian surface Mm.
The parametric u-line v = v0 = const is given by

cu : z(u) = cαf(u) e1 + cβf(u) e3 +

(
c2

2
f(u) + g(u)

)
ξ1 + f(u) ξ2,

where α = cosh v0, β = sinh v0, c = ϕ(v0). So, the unit tangent vector field tcu
of cu is:

tcu =
1√

2εf ′g′

(
cαf ′ e1 + cβf ′ e3 +

(
c2

2
f ′ + g′

)
ξ1 + f ′ ξ2

)
.

We denote by s the arc-length of cu and calculate the derivative

dtcu
ds

=
t′cu
s′

=
ε(f ′′g′ − g′′f ′)

(2εf ′g′)2

(
cαf ′ e1 + cβf ′ e3 +

(
c2

2
f ′ − g′

)
ξ1 + f ′ ξ2

)
.

Thus we obtain that the curvature of cu is
ε(f ′′g′ − g′′f ′)

(2εf ′g′)
3
2

. Finally, for each

v = const the parametric lines cu are congruent in E4
2. These curves are the

meridians of Mm. We denote κm(u) =
ε(f ′′g′ − g′′f ′)

(2εf ′g′)
3
2

.

Now, we shall consider the parametric v-lines of Mm. Let u = u0 = const
and denote a = f(u0), b = g(u0). The corresponding parametric v-line is given
by

cv : z(v) = aϕ(v) cosh v e1 + aϕ(v) sinh v e3 +

(
a
ϕ2(v)

2
+ b

)
ξ1 + a ξ2.

The unit tangent vector field tcv of cv is

tcv =
1√

ε(ϕ̇2 − ϕ2)
((ϕ̇ cosh v + ϕ sinh v) e1 + (ϕ̇ sinh v + ϕ cosh v) e3 + ϕϕ̇ ξ1) .

Knowing the tangent vector field tcv we calculate the curvature κcv of cv and

obtain that κcv =
ϕϕ̈− 2ϕ̇2 + ϕ2

a(ε(ϕ̇2 − ϕ2))
3
2

. We denote κ(v) =
ϕϕ̈− 2ϕ̇2 + ϕ2

(ε(ϕ̇2 − ϕ2))
3
2

. Then,

for each u = u0 = const the curvature of the corresponding parametric v-line is
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expressed as κcv =
1

a
κ(v), where a = f(u0). Actually, κ(v) is the curvature of

the curve

c : l = l(v) = ϕ(v) cosh v e1 + ϕ(v) sinh v e3 +
ϕ2(v)

2
ξ1 + ξ2.

Consequently, formulas (3.5) take the form

h(X,X) = κm n1;

h(X,Y ) = 0;

h(Y, Y ) = − 1

f

√
εf ′

2g′
n1 − ε

κ

f
n2.

(3.6)

It follows from (3.6) that the Gauss curvature K of the meridian surface Mm

is expressed as

K = ε
κm
f

√
εf ′

2g′

and the mean curvature vector field H is given by

H = −ε
2

(
κm +

1

f

√
εf ′

2g′

)
n1 −

κ

2f
n2.

Without loss of generality we can assume that 2εf ′g′ = 1, which implies

κm =
f ′′

f ′
. Hence,

K = ε
f ′′

f
, (3.7)

H = −ε(ff
′′ + (f ′)2)

2ff ′
n1 −

κ

2f
n2. (3.8)

Now, using (3.4) and (3.6) we obtain that

∇Xn1 = κmX; ∇Xn2 = 0;

∇Y n1 =
1

f

√
εf ′

2g′
Y ; ∇Y n2 = −εκ

f
Y.

(3.9)

Hence,
DXn1 = 0; DXn2 = 0;

DY n1 = 0; DY n2 = 0,
(3.10)

where D is the normal connection of the surface. The last equalities imply
that the curvature of the normal connection of Mm is zero. So, we obtain the
following statement.
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Proposition 3.1. The meridian surface Mm, defined by (3.2), is a surface
with flat normal connection.

In the next sections we will give the classification of the meridian surfaces
with constant Gauss curvature, with parallel mean curvature vector field and
with parallel normalized mean curvature vector field.

4 Meridian Surfaces with constant
Gauss curvature

The study of surfaces with constant Gauss curvature is one of the essential topics
in differential geometry. Surfaces with constant Gauss curvature in Minkowski
space have drawn the interest of many geometers, see for example [14], [21], and
the references therein.

LetMm be a meridian surface, defined by (3.2). Then the Gauss curvature
ofMm depends only on the meridian curve m and is expressed by formula (3.7).
First, we shall describe the meridian surfaces with zero Gauss curvature.

Theorem 4.1. Let Mm be a meridian surface, defined by (3.2). Then Mm is
flat if and only if the meridian curve m is given by

f(u) = au+ b; g(u) =
ε

2a
u+ c,

where a = const 6= 0, b = const, c = const. In this case Mm is a developable
ruled surface.

Proof. It follows from (3.7) that K = 0 if and only if f(u) = au + b, a =

const 6= 0, b = const. Using that 2εf ′g′ = 1, we obtain g(u) =
ε

2a
u+ c,

c = const. Since in this case κm = 0, then the meridian curve m is part of a
straight line, i.e. Mm lies on a ruled surface. Moreover, it follows from (3.9)
that ∇Xn1 = 0; ∇Xn2 = 0, which implies that the normal space is constant at
the points of a fixed straight line, and hence the tangent space is one and the
same at the points of a fixed line. Consequently, Mm is part of a developable
ruled surface.

The following theorem describes the meridian surfaces with constant non-
zero Gauss curvature.

Theorem 4.2. Let Mm be a meridian surface, defined by (3.2). Then Mm

has constant non-zero Gauss curvature K if and only if the meridian curve m
is given by

f(u) = α cosh
√
εKu+ β sinh

√
εKu, if εK > 0;

f(u) = α cos
√
−εKu+ β sin

√
−εKu, if εK < 0,

(4.1)
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where α and β are constants, g(u) is defined by g′(u) =
ε

2f ′(u)
.

Proof. Using that the Gauss curvature is expressed by (3.7), we obtain that
K = const 6= 0 if and only if the function f(u) satisfies the following differential
equation

f ′′(u)− εKf(u) = 0.

The general solution of this equation is given by (4.1), where α and β are
constants. Since we assume that 2εf ′g′ = 1, then the function g(u) is determined

by g′(u) =
ε

2f ′(u)
.

5 Meridian surfaces with parallel

mean curvature vector field

Another basic class of surfaces in Riemannian and pseudo-Riemannian geome-
try are surfaces with parallel mean curvature vector field, since they are critical
points of some functionals and play important role in differential geometry, the
theory of harmonic maps, as well as in physics. The classification of surfaces
with parallel mean curvature vector field in Riemannian space forms was given
by Chen [5] and Yau [23]. Recently, spacelike surfaces with parallel mean cur-
vature vector field in pseudo-Euclidean spaces with arbitrary codimension were
classified in [8] and [9]. The classification of quasi-minimal surfaces with paral-
lel mean curvature vector in E4

2 is given in [12]. Lorentz surfaces with parallel
mean curvature vector field in arbitrary pseudo-Euclidean space Ems are studied
in [10] and [13]. A nice survey on classical and recent results on submani-
folds with parallel mean curvature vector in Riemannian manifolds as well as in
pseudo-Riemannian manifolds is presented in [11].

In this section we shall describe the meridian surfaces with non-zero parallel
mean curvature vector field, i.e. H 6= 0 and DH = 0.

Under the assumption 2εf ′g′ = 1 the mean curvature vector field H of the
meridian surface Mm is given by formula (3.8). Using that DXn1 = DY n1 =

DXn2 = DY n2 = 0, and X = zu, Y =
zv

f
√
ε(ϕ̇2 − ϕ2)

, we get

DXH = −ε
2

(
ff ′′ + (f ′)2

ff ′

)′

n1 +
κf ′

2f2
n2;

DYH = − κ′

2f2
√
ε(ϕ̇2 − ϕ2)

n2.
(5.1)

Theorem 5.1. Let Mm be a meridian surface, defined by (3.2). Then Mm

has parallel mean curvature vector field if and only if the curvature of c is κ = 0
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and the meridian curve m is determined by f ′ = φ(f) where

φ(t) =
a t2 + b

2t
, a = const 6= 0, b = const,

g(u) is defined by g′(u) =
ε

2f ′(u)
. In this case Mm is a non-flat CMC surface

lying in a hyperplane of E4
2.

Proof. Using formulas (5.1) we get thatMm has parallel mean curvature vector
field if and only if the following conditions hold(

ff ′′ + (f ′)2

ff ′

)′

= 0;

κf ′ = 0;

κ′ = 0.

(5.2)

Since f ′ 6= 0, the equalities (5.2) imply that κ = 0 and
ff ′′ + (f ′)2

ff ′
= a = const.

If a = 0, then H = 0, i.e. Mm is minimal. Since we consider non-minimal
surfaces, we assume that a 6= 0. In this case the meridian curve m is determined
by the following differential equation:

ff ′′ + (f ′)2 = aff ′, a = const 6= 0. (5.3)

The solutions of the last differential equation can be found as follows. Setting
f ′ = φ(f) in equation (5.3), we obtain that the function φ = φ(t) is a solution
of the equation

φ′ +
1

t
φ = a. (5.4)

The general solution of equation (5.4) is given by

φ(t) =
a t2 + b

2t
, b = const. (5.5)

In this case, the mean curvature vector field H is given by H = −εa
2
n1,

and thus 〈H,H〉 =
εa2

4
= const. Hence, the surface Mm is a CMC surface.

Moreover, since κ = 0, from (3.9) it follows that ∇Xn2 = 0, ∇Y n2 = 0. Hence,
Mm lies in a 3-dimensional constant hyperplane parallel to span{X,Y, n1}. The
Gauss curvature K 6= 0, soMm is a non-flat CMC surface lying in a hyperplane
of E4

2.

Conversely, if the meridian curve m is determined by (5.5), then by direct
computation we get that DXH = DYH = 0, i.e. the surface has parallel mean
curvature vector field.
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Theorem 5.1 shows that each meridian surface with parallel mean curvature
vector field is a CMC surface and lies in a hyperplane of E4

2. So, we have the
following result.

Corollary 5.2. There are no Lorentz meridian surfaces with parallel mean
curvature vector field other than CMC surfaces lying in a hyperplane of E4

2.

Remark. The same result holds true for meridian surfaces lying on rotational
hypersurfaces with spacelike or timelike axis [4].

6 Meridian surfaces with parallel
normalized mean curvature vector

field

The class of surfaces with parallel mean curvature vector field is naturally ex-
tended to the class of surfaces with parallel normalized mean curvature vector
field. A submanifold in a Riemannian manifold is said to have parallel nor-
malized mean curvature vector field if the mean curvature vector is non-zero
and the unit vector in the direction of the mean curvature vector is parallel in
the normal bundle [6]. It is well known that submanifolds with non-zero paral-
lel mean curvature vector field have parallel normalized mean curvature vector
field. But the condition to have parallel normalized mean curvature vector field
is much weaker than the condition to have parallel mean curvature vector field.
For example, every surface in the Euclidean 3-space has parallel normalized
mean curvature vector field but in the 4-dimensional Euclidean space, there
exist abundant examples of surfaces which lie fully in E4 with parallel normal-
ized mean curvature vector field, but not with parallel mean curvature vector
field. In the pseudo-Euclidean space with neutral metric E4

2 the study of Lorentz
surfaces with parallel normalized mean curvature vector field, but not parallel
mean curvature vector field, is still an open problem.

In this section we give the classification of all meridian surfaces which have
parallel normalized mean curvature vector field but not parallel H.

LetMm be a meridian surface, defined by (3.2). The mean curvature vector
field H is given by formula (3.8). We assume that 〈H,H〉 6= 0, i.e. (ff ′′ +
(f ′)2)2 − κ2f ′2 6= 0.

If κ = 0, then the normalized mean curvature vector field is H0 = n1 and in
view of (3.10) we have DXH0 = DYH0 = 0, i.e. H0 is parallel in the normal
bundle. We consider this case as trivial, since under the assumption κ = 0
the surface Mm lies in a 3-dimensional hyperplane of E4

2 and every surface in
3-dimensional space has parallel normalized mean curvature vector field. So,
further we assume that κ 6= 0.

A unit normal vector field in the direction of H is

H0 =
−1√

|(ff ′′ + (f ′)2)2 − κ2f ′2|
(
(ff ′′ + (f ′)2)n1 + κf ′ n2

)
. (6.1)
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For simplicity we denote

A =
−(ff ′′ + (f ′)2)√

|(ff ′′ + (f ′)2)2 − κ2f ′2|
, B =

−κf ′√
|(ff ′′ + (f ′)2)2 − κ2f ′2|

,

so, the normalized mean curvature vector field is expressed as H0 = An1+B n2.
Then from equalities (6.1) and (3.10) we get

DXH0 = X(A)n1 +X(B)n2;

DYH0 = Y (A)n1 + Y (B)n2.
(6.2)

Theorem 6.1. LetMm be a meridian surface, defined by (3.2). ThenMm has
parallel normalized mean curvature vector field but not parallel mean curvature
vector if and only if one of the following cases holds:

(i) κ 6= 0 and the meridian curve m is defined by

f(u) =
√
au+ b, g(u) =

2

3a2
(au+ b)

3
2 + c,

where a = const 6= 0, b = const, c = const.
(ii) κ = const 6= 0 and the meridian curve m is determined by f ′ =

φ(f) where

φ(t) =
c t+ b

t
, c = const 6= 0, c2 6= κ2, b = const,

g(u) is defined by g′(u) =
ε

2f ′(u)
.

Proof. Let Mm be a surface with parallel normalized mean curvature vector
field, i.e. DXH0 = 0, DYH0 = 0. Then from (6.2) it follows that A = const,
B = const. Hence,

−(ff ′′ + (f ′)2)√
|(ff ′′ + (f ′)2)2 − κ2f ′2|

= α = const;

−κf ′√
|(ff ′′ + (f ′)2)2 − κ2f ′2|

= β = const.
(6.3)

We have the following two cases.

Case (i): ff ′′ + (f ′)2 = 0. In this case, from (3.8) we get that the mean

curvature vector field is H = − κ

2f
n2 and the normalized mean curvature vector

field is H0 = n2. Since we study surfaces with 〈H,H〉 6= 0, we get κ 6= 0. The
solution of the differential equation ff ′′ + (f ′)2 = 0 is given by the formula

f(u) =
√
au+ b, where a = const 6= 0, b = const. Using that g′(u) =

ε

2f ′(u)
,

we obtain g(u) =
2

3a2
(au+ b)

3
2 + c, where c = const.
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Case (ii): ff ′′ + (f ′)2 6= 0 in an interval Ĩ ⊂ I ⊂ R. Then, from (6.3) we get

α

β
κ =

ff ′′ + (f ′)2

f ′
, α 6= 0, β 6= 0. (6.4)

Since the left-hand side of equality (6.4) is a function of v, the right-hand side
of (6.4) is a function of u, we obtain that

ff ′′ + (f ′)2

f ′
= c, c = const 6= 0;

κ =
β

α
c.

In this case we have 〈H,H〉 =
ε(c2 − κ2)

4f2
. Since we study surfaces with

〈H,H〉 6= 0, we get c2 6= κ2. The meridian curve m is determined by the
following differential equation:

ff ′′ + (f ′)2 = cf ′. (6.5)

Setting f ′ = φ(f) in equation (6.5), we obtain that the function φ = φ(t)
satisfies

φ′ +
1

t
φ =

c

t
,

whose general solution is φ(t) =
ct+ b

t
, b = const.

Conversely, if one of the cases (i) or (ii) stated in the theorem holds true,
then by direct computation we get that DXH0 = DYH0 = 0, i.e. the surface
has parallel normalized mean curvature vector field. Moreover, in case (i) we
have

DXH =
κf ′

2f2
n2; DYH = − κ′

2f2
√
ε(ϕ̇2 − ϕ2)

n2,

which implies that H is not parallel in the normal bundle, since κ 6= 0, f ′ 6= 0.
In case (ii) we get

DXH =
εcf ′

2f2
n1 +

κf ′

2f2
n2; DYH = 0,

and again we have that H is not parallel in the normal bundle.

Remark. Theorem 6.1 gives examples of Lorentz surfaces in the pseudo-
Euclidean space E4

2 which have parallel normalized mean curvature vector field
but not parallel mean curvature vector field.

Acknowledgements

The author is partially supported by the Bulgarian National Science Fund, Ministry of Edu-

cation and Science of Bulgaria under contract DFNI-I 02/14.

152



References

[1] Arslan K., Bulca B., Milousheva V., Meridian surfaces in E4 with pointwise
1-type Gauss map, Bull. Korean Math. Soc., 51 (2014), 911–922.

[2] Arslan K., Milousheva V., Meridian surfaces of elliptic or hyperbolic type
with pointwise 1-type Gauss map in Minkowski 4-space, Taiwanese J. Math.,
20 (2016), 311–332.

[3] Bulca B., Milousheva V., Meridian surfaces with constant mean curvature
in pseudo-Euclidean 4-space with neutral metric, Mediterr. J. Math., 14
(2017), 14: 48.

[4] Bulca B., Milousheva V., Meridian surfaces with parallel normalized mean
curvature vector field in pseudo-Euclidean 4-space with neutral metric, Int.
Jour. Geom. 6 (2017), 67–84

[5] Chen B.-Y., Geometry of Submanifolds, Marcel Dekker, Inc., New York
1973.

[6] Chen B.-Y., Surfaces with parallel normalized mean curvature vector,
Monatsh. Math., 90 (1980), 185–194.

[7] Chen B.-Y., Classification of marginally trapped surfaces of constant curva-
ture in Lorentzian complex plane, Hokkaido Math. J., 38 (2009), 361–408.

[8] Chen B.-Y., Classification of spatial surfaces with parallel mean curvature
vector in pseudo-Euclidean spaces with arbitrary codimension, J. Math.
Phys., 50 (2009), 043503.

[9] Chen B.-Y., Complete classification of spatial surfaces with parallel mean
curvature vector in arbitrary non-flat pseudo-Riemannian space forms,
Cent. Eur. J. Math., 7 (2009), 400–428.

[10] Chen B.-Y., Complete classification of Lorentz surfaces with parallel mean
curvature vector in arbitrary pseudo-Euclidean space, Kyushu J. Math., 64
(2010), 261–279.

[11] Chen B.-Y., Submanifolds with parallel mean curvature vector in Rieman-
nian and indefinite space forms, Arab J. Math. Sci., 16 (2010), 1–46.

[12] Chen B.-Y., Garay O., Classification of quasi-minimal surfaces with parallel
mean curvature vector in pseudo-Euclidean 4-space E4

2, Result. Math., 55
(2009), 23–38.

[13] Fu Y., Hou Z.-H., Classification of Lorentzian surfaces with parallel mean
curvature vector in pseudo-Euclidean spaces, J. Math. Anal. Appl., 371
(2010), 25–40.

153



[14] Gálvez J., Mart́ınez A., Milán F., Complete constant Gaussian curvature
surfaces in the Minkowski space and harmonic diffeomorphisms onto the
hyperbolic plane, Tohoku Math. J., 55 (2003), 467–476.

[15] Ganchev G., Milousheva V., Invariants and Bonnet-type theorem for sur-
faces in R4, Cent. Eur. J. Math., 8 (2010), 993–1008.

[16] Ganchev G., Milousheva V., An invariant theory of marginally trapped sur-
faces in the four-dimensional Minkowski space, J. Math. Phys., 53 (2012),
Article ID: 033705, 15 pp.

[17] Ganchev G., Milousheva V., Special classes of meridian surfaces in the four-
dimensional Euclidean space, Bull. Korean Math. Soc., 52 (2015), 2035–
2045.

[18] Ganchev G., Milousheva V., Meridian surfaces of elliptic or hyperbolic type
in the four-dimensional Minkowski space, Math. Commun., 21 (2016), 1–21.

[19] Ganchev G., Milousheva V., Marginally trapped meridian surfaces of
parabolic type in the four-dimensional Minkowski space, Int. J. Geom. Meth-
ods Mod. Phys., 10 (2013), Article ID: 1350060, 17 pp.

[20] Ganchev G., Milousheva V., Meridian surfaces of parabolic type in the four-
dimensional Minkowski space, in Geometry, Integrability and Quantization,
I. Mladenov, G. Meng and A. Yoshioka (Eds), Avangard Prima, 2016, 243–
255.
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Abstract. We study pseudo-Hermitian C-parallel and C-proper slant curves
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1 Introduction

In [7], Chen defined biharmonic submanifold as a Riemannian submanifold with
vanishing Laplacian of mean curvature vector field ∆H. Curves in a Euclidean
space satisfying the condition ∆⊥H = λH were classified in [2], by Barros and
Garay, where ∆⊥ denotes the Laplacian of the curve in the normal bundle and
λ is a real valued function. In the real space form, the classification of curves
satisfying ∆H = λH and ∆⊥H = λH were given in [1], by Arroyo, Barros and
Garay.

A curve in a contact metric manifold is said to be slant [9], if its tan-
gent vector field has a constant angle with the Reeb vector field. In partic-
ular, if the contact angle is equal to π

2 , then the curve is called a Legendre
curve. In [8], Cho and Lee studied slant curves in pseudo-Hermitian contact
3-manifolds. Legendre curves with pseudo-Hermitian parallel mean curvature
vector field, pseudo-Hermitian proper mean curvature vector field and pseudo-
Hermitian proper mean curvature vector field in the normal bundle in contact
pseudo-Hermitian 3-manifolds were studied by Lee in [12]. In [14], the present
author and Güvenç studied slant curves with pseudo-Hermitian parallel mean
curvature vector field, pseudo-Hermitian proper mean curvature vector field and
pseudo-Hermitian proper mean curvature vector field in the normal bundle in
contact pseudo-Hermitian 3-manifolds. The notions of C-parallel and C-proper
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curves in the tangent and normal bundles were introduced by Lee, Suh and
Lee in [13]. A curve in an almost contact metric manifold is defined to be
C-parallel if ∇TH = λξ, C-proper if ∆H = λξ, C-parallel in the normal bundle
if ∇⊥TH = λξ, C-proper in the normal bundle if ∆⊥H = λξ, where T is the
unit tangent vector field of the curve and λ is a differentiable function along the
curve. In [13], Lee, Suh and Lee studied C-parallel and C-proper slant curves in
Sasakian 3-manifolds. C-parallel and C-proper slant curves in trans-Sasakian
manifolds were studied in [15], by Güvenç and the present author. On the other
hand, slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry were
studied by Călin and Crasmareanu in [6]. Slant curves in normal almost contact
geometry were studied in [5].

Motivated by the above studies, in the present paper, we study pseudo-
Hermitian C-parallel and C-proper slant curves in contact metric 3-manifolds.
We give two examples of pseudo-Hermitian Legendre circle and pseudo-Hermitian
slant helix in Sasakian Heisenberg group.

2 Preliminaries

Let M be a (2n+1)-dimensional manifold. M is called a contact manifold [3] if
there exists a global 1-form η such that η ∧ (dη)n 6= 0 everywhere on M . Given
a contact form η, there exists a unique vector field ξ, the characteristic vector
field, which satisfies η(ξ) = 1 and dη(X, ξ) = 0 for any vector field X on M .
There exists an associated Riemannian metric g and a (1, 1)-type tensor field ϕ
satisfying

ϕ2X = −X + η(X)ξ, η(X) = g(X, ξ), dη(X,Y ) = g(X,ϕY ), (2.1)

for all X,Y ∈ χ(M). From (2.1), it is easy to see that

ϕξ = 0, η ◦ ϕ = 0, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ). (2.2)

A Riemannian manifold equipped with the structure tensors (ϕ, ξ, η, g) satis-
fying (2.1) is called a contact metric manifold. It is denoted byM = {M,ϕ, ξ, η, g}.
The operator h is defined by h = 1

2Lξϕ, where Lξ is the Lie differentiation op-
erator in the characteristic direction ξ. From the definition of h, it is easy to
see that h is symmetric and satisfies the following equations (see [3], page 67):

hξ = 0, hϕ = −ϕh, ∇Xξ = −ϕX − ϕhX, (2.3)

where ∇ denotes the Levi-Civita connection.
For a (2n+ 1)-dimensional contact metric manifold M = {M,ϕ, ξ, η, g}, the

almost complex structure J on M × R is defined by

J(X, f d
dt ) = (ϕX − fξ, η(X) ddt ), (2.4)

where X is a vector field tangent to M , t is the coordinate function of R and f
is a C∞ function on M ×R. If J is integrable then the contact metric manifold
M is called a Sasakian manifold [3].
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For a (2n + 1)-dimensional contact metric manifold M = {M,ϕ, ξ, η, g}
provides a splitting of the tangent bundle

TM = Ker(ϕ)⊕ Im(ϕ)

and the restriction J = ϕ |D defines an almost complex structure on D = Im(ϕ).
There is a well-known concept of almost CR-structure as follows: Let M be a
(2n + s)-dimensional smooth manifold. Let D be a smooth distribution on M
of real dimension 2n and J a (1, 1)-tensor field on M such that

J2X = −X, X ∈ D.

Then (D, J) is called almost complex distribution (or an almost CR-structure).
Then M is an almost CR-manifold (or a contact strongly pseudo-convex pseudo-
Hermitian manifold) [3].

The Tanaka-Webster connection ∇̂ (or the pseudo-Hermitian connection)
([16], [18]) on a contact strongly pseudo-convex pseudo-Hermitian manifold M
is defined by

∇̂XY = ∇XY + η(X)ϕY + (∇Xη)(Y )ξ − η(Y )∇Xξ

for all X,Y ∈ χ(M). By the use of (2.3), ∇̂ can be rewritten as

∇̂XY = ∇XY + η(X)ϕY + η(Y )(ϕX + ϕhX)− g(ϕX + ϕhX, Y )ξ. (2.5)

From (2.5), the torsion of the Tanaka-Webster connection ∇̂ is

T̂ (X,Y ) = 2g(X,ϕY )ξ + η(Y )ϕhX − η(X)ϕhY. (2.6)

If M is a Sasakian manifold, since h = 0, then the equations (2.5) and (2.6)
turn into

∇̂XY = ∇XY + η(X)ϕY + η(Y )ϕX − g(ϕX, Y )ξ,

T̂ (X,Y ) = 2g(X,ϕY )ξ,
(2.7)

respectively.

3 Slant curves in contact
pseudo-Hermitian geometry

Let M = {M,ϕ, ξ, η, g} be a contact metric 3-manifold and γ : I → M a curve
parametrized by arc-length in M . The Frenet frame field {T,N,B} along γ for

the pseudo-Hermitian connection ∇̂ can be defined by

∇̂TT = κ̂N,

∇̂TN = −κ̂T + τ̂B,

∇̂TB = −τ̂N,
(3.1)
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where κ̂ =
∥∥∥∇̂TT∥∥∥ is the pseudo-Hermitian curvature of γ and τ̂ its pseudo-

Hermitian torsion [8]. Similar to the general curve theory, a curve, whose
pseudo-Hermitian curvature and pseudo-Hermitian torsion are non-zero con-
stants, is called a pseudo-Hermitian helix. Curves with constant non-zero pseudo-
Hermitian curvature and zero pseudo-Hermitian torsion are called pseudo-Hermitian
circles. Pseudo-Hermitian geodesics are curves whose pseudo-Hermitian curva-
ture and pseudo-Hermitian torsion are zero [8].

Let γ : I →M be a Frenet curve parametrized by arc-length parameter s in
a contact metric 3-manifold M . The contact angle α(s) is a function defined by
cos[α(s)] = g(T (s), ξ). If the contact angle α(s) is a constant, then γ is called
a slant curve [9]. Slant curves with contact angle π/2 are traditionally called
Legendre curves [3].

Throughout the present paper, we assume that all curves are non-geodesic
Frenet curves, that is, κ̂ 6= 0.

In [8], Cho and Lee proved the following three propositions:

Proposition 3.1. [8] A curve γ for ∇̂ is a slant curve if and only if it satisfies
η(N) = 0.

Proposition 3.2. [8] Let γ be a slant curve for ∇̂ in a 3-dimensional contact
metric manifold M . Then the ratio of τ̂ and κ̂ is a constant.

Note that
τ̂

κ̂
= cotα0, (3.2)

where α0 is the contact angle of γ [14].

Proposition 3.3. [8] If a curve in a 3-dimensional contact metric manifold for

Tanaka-Webster connection ∇̂ is a Legendre curve, then τ̂ = 0.

In [14], the present author and Güvenç showed that the converse statement
of the above proposition is also true. They gave the following result:

Corollary 3.4. [14] Let γ be a slant curve for Tanaka-Webster connection ∇̂
with contact angle α0 in a 3-dimensional contact metric manifold M . Then γ
is a Legendre curve if and only if τ̂ = 0.

4 Pseudo-Hermitian mean curvature

vector field

The pseudo-Hermitian mean curvature vector field Ĥ of a curve γ in a 3-
dimensional contact metric manifold is defined by

Ĥ = ∇̂TT = κ̂N, (4.1)

(see [12]). From (4.1), it is easy to see that

∇̂T Ĥ = −κ̂2T + κ̂′N + κ̂τ̂B, (4.2)
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∇̂⊥T Ĥ = κ̂′N + κ̂τ̂B, (4.3)

where Ĥ is the pseudo-Hermitian mean curvature vector field of γ [12].

Definition 4.1. Let H be the mean curvature vector field of a curve γ in a
3-dimensional contact metric manifold M . The mean curvature vector field H
is said to be pseudo-Hermitian C-parallel if ∇̂T Ĥ = λξ. The vector field H
is said to be pseudo Hermitian C-proper mean curvature vector field if 4̂Ĥ =
λξ. Similarly, H is said to be pseudo-Hermitian C-parallel vector field in the
normal bundle if ∇̂⊥T Ĥ = λξ, and H is said to be pseudo-Hermitian C-proper

mean curvature vector field in the normal bundle if 4̂
⊥
Ĥ = λξ, where λ is a

differentiable function along the curve.

Lemma 4.2. [14]Let γ be a curve in a 3-dimensional contact metric manifold
M . Then

∇̂T ∇̂T ∇̂TT = −3κ̂κ̂′T + (κ̂′′ − κ̂3 − κ̂τ̂2)N + (2κ̂′τ̂ + κ̂τ̂ ′)B, (4.4)

∇̂⊥T ∇̂⊥T ∇̂⊥T T = (κ̂′′ − κ̂τ̂2)N + (2κ̂′τ̂ + κ̂τ̂ ′)B (4.5)

and
4̂Ĥ = −∇̂T ∇̂T ∇̂TT,
4̂
⊥
Ĥ = −∇̂⊥T ∇̂⊥T ∇̂⊥T T.

(4.6)

Using Lemma 4.2, we have the following theorem:

Theorem 4.3. A slant curve γ in a 3-dimensional contact metric manifold M
has pseudo-Hermitian C-parallel mean curvature vector field if and only if it is
a pseudo-Hermitian helix satisfying

κ̂ = ∓
√
−λ cosα0 and τ̂ = ∓ λ sinα0√

−λ cosα0

,

where λ cosα0 < 0.

Proof. Assume that a slant curve γ has pseudo-Hermitian C-parallel mean cur-
vature vector field. Then from (4.2), the condition ∇̂T Ĥ = λξ gives

−κ̂2T + κ̂′N + κ̂τ̂B = λξ. (4.7)

Since γ is a slant curve we can write

ξ = cosα0T + sinα0B. (4.8)

So using (4.7) and (4.8) we can write

−κ̂2T + κ̂′N + κ̂τ̂B = λ (cosα0T + sinα0B) . (4.9)

Taking the inner product of (4.9) with N and using η(N) = 0 we find κ̂′ = 0,
which implies that κ̂ is a constant. Hence from the equation (4.9), it follows
that κ̂ = ∓

√
−λ cosα0. Since τ̂

κ̂ = cotα0 we obtain τ̂ = ∓ λ sinα0√
−λ cosα0

, where

λ cosα0 < 0.
The converse statement is trivial.
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Theorem 4.4. A slant curve γ in a 3-dimensional contact metric manifold
M has pseudo-Hermitian C-parallel mean curvature vector field in the normal
bundle if and only if it is a pseudo-Hermitian Legendre circle.

Proof. Assume that a slant curve γ has pseudo-Hermitian C-parallel mean
curvature vector field in the normal bundle. Then from (4.2), the condition

∇̂⊥T Ĥ = λξ gives

κ̂′N + κ̂τ̂B = λ (cosα0T + sinα0B) . (4.10)

So we have
κ̂′ = 0, (4.11)

λ cosα0 = 0, (4.12)

κ̂τ̂ = λ sinα0. (4.13)

Then κ̂ is a constant. From (4.12), if cosα0 = 0, then α0 = π/2. So it is
a Legendre curve. Then from Proposition 3.4, τ̂ = 0, which implies γ is a
pseudo-Hermitian Legendre circle. Moreover, from (4.13) we have λ = 0.

The converse statement is trivial.

Theorem 4.5. There does not exist non-geodesic slant curve in a 3-dimensional
contact metric manifold M with pseudo Hermitian C-proper mean curvature.

Proof. Assume that γ is a non-geodesic slant curve with contact angle α0 and has
pseudo Hermitian C-proper mean curvature field. Then by definition, 4̂Ĥ = λξ.
Using (4.6) and (4.8), we get

3κ̂κ̂′T − (κ̂′′ − κ̂3 − κ̂τ̂2)N − (2κ̂′τ̂ + κ̂τ̂ ′)B

= λ (cosα0T + sinα0B) . (4.14)

Hence we have
3κ̂κ̂′ = λ cosα0,

κ̂′′ − κ̂3 − κ̂τ̂2 = 0,

2κ̂′τ̂ + κ̂τ̂ ′ = −λ sinα0.

So using τ̂
κ̂ = cotα0, we find λ = 0. Then using Theorem 4.4. in [14], we find

κ̂ = 0. Since γ is not a geodesic, it can not have pseudo Hermitian C-proper
mean curvature.

This completes the proof.

Theorem 4.6. A slant curve γ in a 3-dimensional contact metric manifold
M has pseudo-Hermitian C-proper mean curvature field in the normal bundle
if and only if either it is a Legendre curve with pseudo-Hermitian curvature
κ̂(s) = as + b, where a and b are real constants or it is a pseudo-Hermitian
Legendre circle.
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Proof. Assume that γ is a non-geodesic slant curve with contact angle α0 and has
pseudo Hermitian C-proper mean curvature vector field in the normal bundle.

Then by definition, 4̂
⊥
Ĥ = λξ. Using (4.6) and (4.8), we get

−(κ̂′′ − κ̂τ̂2)N − (2κ̂′τ̂ + κ̂τ̂ ′)B = λ (cosα0T + sinα0B) .

Then we have
κ̂′′ − κ̂τ̂2 = 0, (4.15)

−(2κ̂′τ̂ + κ̂τ̂ ′) = λ sinα0, (4.16)

λ cosα0 = 0. (4.17)

From (4.17), if cosα0 = 0, then α0 = π/2. So it is a Legendre curve. Then
from Proposition 3.4, τ̂ = 0. Thus the equations (4.15) and (4.16) give us
λ = 0. Then by Theorem 4.7 in [14], it follows that γ is a Legendre curve with
pseudo-Hermitian curvature κ̂(s) = as+ b, where a and b are real constants. If
cosα0 6= 0 and λ = 0 then in view of Theorem 4.7 in [14], it follows that γ is a
pseudo-Hermitian Legendre circle.

The converse statement is trivial.

5 Slant curves of Sasakian Heisenberg

Group with Pseudo-Hermitian

Connection

The Heisenberg group H3 can be viewed as R3 equipped with Riemannian metric

g = dx2 + dy2 + η ⊗ η,

where (x, y, z) are standard coordinates in R3 and

η = dz + ydx− xdy.

The 1-form η satisfies dη ∧ η = −λdx ∧ dy ∧ dz. Hence η is a contact form.
In [10], Inoguchi obtained the Levi-Civita connection ∇ of the metric g with
respect to the left-invariant orthonormal basis

e1 =
∂

∂x
− y ∂

∂z
, e2 =

∂

∂y
+ x

∂

∂z
, e3 =

∂

∂z
.

He obtained
∇e1e1 = 0, ∇e1e2 = e3, ∇e1e3 = −e2,
∇e2e1 = −e3, ∇e2e2 = 0, ∇e2e3 = e1,
∇e3e1 = −e2, ∇e3e2 = e1, ∇e3e3 = 0.

(5.1)

We also have the Heisenberg brackets

[e1, e2] = 2e3, [e2, e3] = [e3, e1] = 0.
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Let ϕ be the (1, 1)-tensor field defined by ϕ(e1) = e2, ϕ(e2) = −e1 and
ϕ(e3) = 0. Then using the linearity of ϕ and g we have

η(e3) = 1, ϕ2(X) = −X + η(X)e3, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

We also have
dη(X,Y ) = g(X,ϕY )

for all X,Y ∈ χ(M). Thus for ξ = e3, (ϕ, ξ, η, g) is a contact metric structure
and the Heisenberg group H3 is a Sasakian space form of constant holomorphic
sectional curvature −3 [10].

Now, let γ : I → H3 be a slant curve with contact angle α0. Assume that
γ is parametrized by arc length s and {T,N,B} denote the Frenet frame of γ.
Then we can write

T = sinα0 cosβe1 + sinα0 sinβe2 + cosα0e3, (5.2)

where β = β(s). Using (5.1) we have

∇TT = (− sinα0 sinβ (β′ − 2 cosα0)) e1

+ (sinα0 cosβ (β′ − 2 cosα0)) e2. (5.3)

On the other hand by the use of (5.2) it follows that

ϕT = − sinα0 sinβe1 + sinα0 cosβe2. (5.4)

By the use of (2.7) we find

∇̂TT = −β′ sinα0 sinβe1 + β′ sinα0 cosβe2. (5.5)

Since ∇̂TT = κ̂N , the equation (5.5) gives us

κ̂ = |β′| sinα0. (5.6)

Hence the principal normal vector field N of γ can be written as

N = sgn(β′) (− sinβe1 + cosβe2) .

Since B = T ×N , we find

B = sgn(β′) (− cosα0 cosβe1 − cosα0 sinβe2 + sinα0e3) .

Then it is easy to see that

B′ = sgn(β′) (β′ cosα0 − cos 2α0) (sinβe1 − cosβe2) ,

which gives us
τ̂ = β′ cosα0 − cos 2α0. (5.7)

162



Now assume that τ̂ = 0. Then from Proposition 3.4, γ is a Legendre curve.
Using (5.7), we obtain

β(s) =
cos 2α0

cosα0
s+ c,

where c is a real constant. Hence from (5.6), κ̂ is a constant.
Let γ(s) = (x(s), y(s), z(s)). To find the explicit equations, we should inte-

grate the system dγ
ds = T . Then

dx

ds
= sinα0 cos

(
cos 2α0

cosα0
s+ c

)
,

dy

ds
= sinα0 sin

(
cos 2α0

cosα0
s+ c

)
,

dz

ds
= cosα0 +

1

2
sinα0

(
sin

(
cos 2α0

cosα0
s+ c

)
x(s)− cos

(
cos 2α0

cosα0
s+ c

)
y(s)

)
.

So using the method given in [4], the integration of above system gives the
following example:

Example 5.1. Let γ : I → H3 be a curve with the following parametric equations.

x(s) =
cosα0

cos 2α0
sinα0 sin(

cos 2α0

cosα0
s+ c) + d1,

y(s) = − cosα0

cos 2α0
sinα0 cos(

cos 2α0

cosα0
s+ c) + d2,

z(s) =

(
cosα0 +

cosα0

cos 2α0
sin2 α0

)
s− d1

cosα0

cos 2α0
sinα0 cos(

cos 2α0

cosα0
s+ c)

−d2
cosα0

cos 2α0
sinα0 sin(

cos 2α0

cosα0
s+ c) + d3.

Then γ is a pseudo-Hermitian Legendre circle with pseudo-Hermitian curvature

κ̂ =
∣∣∣ cos 2α0

cosα0

∣∣∣ sinα0, where c, d1, d2 and d3 are some real constants.

Now assume that τ̂ 6= 0 and κ̂ is a constant. Then from (5.6), β′ is a constant.
Then we can write β(s) = as+ b, where a and b are real constants. By the use
of equation (5.7), we find τ̂ = a cosα0− cos 2α0. Hence τ̂ is a constant. Similar
to the method using in previous example, let γ(s) = (x(s), y(s), z(s)). To find
the explicit equations, we should integrate the system dγ

ds = T . Then

dx

ds
= sinα0 cos (as+ b) ,

dy

ds
= sinα0 sin (as+ b) ,

dz

ds
= cosα0 +

1

2
sinα0 (sin (as+ b)x(s)− cos (as+ b) y(s)) .

Similarly, using the method given in [4], the integration of above system gives
the following example:
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Example 5.2. Let γ : I → H3 be a curve with the following parametric equations.

x(s) =
1

a
sinα0 sin(as+ b) + c1,

y(s) = −1

a
sinα0 cos(as+ b) + c2,

z(s) =

(
cosα0 +

1

a
sin2 α0

)
s− c1

a
sinα0 cos(as+ b)

−c2
a

sinα0 sin(as+ b) + c3.

Then γ is a pseudo-Hermitian slant helix with pseudo-Hermitian curvature κ̂ =
|a| sinα0 and pseudo-Hermitian torsion τ̂ = a cosα0−cos 2α0 , where a, b, c1, c2
and c3 are some real constants such that a 6= cos 2α0

cosα0
.
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Elif Özkara Canfes, Joeri Van der Veken
and Cornelia-Livia Bejan
Recieved: February 4, 2017
Accepted: May 22, 2017
DOI: 10.24064/iwts2016.2017.12
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some open problems on this topic. Further, we consider canonical forms
of the shape operator of biconservative hypersurface of index 2 in E5
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1 Introduction

In 1981, Nomizu introduced isoparametric hypersurfaces in Lorentzian space
forms. A hypersurface is called isoparametric if the minimal polynomial of
shape operator is constant. It is well-known that the shape operator of a Rie-
mannian submanifold is always diagonalizable, but this is not the case for the
shape operator of a Lorentzian submanifold. This makes the isoparametric the-
ory in pseudo-Riemannian space forms different from that in Riemannian space
forms. In [5], Magid classified Lorentzian isoparametric hypersurfaces and ob-
tained that the shape operator of a Lorentzian hypersurface in a Minkowski
space can have four possible canonical forms by choosing an appropriate frame
field. He obtained this result by Petrov’s consideration in [6] , i.e., a symmetric
endomorphism of a vector space with a Lorentzian inner product can be put into
one of four possible canonical forms. By considering recent results obtained by
Turgay in [7] and Deepika in [1], one can conclude that there is only two differ-
ent families of biconservative hypersurfaces in E4

1 by considering the canonical
forms of their shape operator (see Theorem 3.3).

Now, there arise a natural question: What will be the canonical forms of the
shape operator if we increase the dimension of the pseudo-Euclidean space as
well as index of the hypersurface? Thus, one can ask a general question which
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is still open to all, i.e., “Does there exist any specific formula from which one
can get all possible canonical forms of the shape operator of a hypersurface with
variable index of general ambient pseudo-Euclidean space En

s ” ? So it is natural
to start index 2 hypersurfaces in E5

2. During study, it is observed that if one
consider index 2 hypersurfaces in E5

2 then the number of canonical forms of the
shape operator increases to 9 whereas it is 4 in case of E4

1.
The paper is organized as follows. In Sect. 2, we give some basic definitions

and formulas which we used in other sections of the paper. In Sect. 3, we
present a short survey about recent papers on biconservative hypersurfaces and
try to point out problems which left open in these papers. In Sect. 4, we study
existance of all possible canonical forms of the shape operator of biconservative
hypersurfaces of index 2 with an additional condition, i.e., ∇H is a lightlike
vector whereas H is mean curvature vector field of the hypersurface, and further,
we obtain our main result.

2 Preliminaries

In this section we recall some basic definitions and formulas that we will use in
other part of the paper.

2.1 Hypersurfaces of E5
2

Let E5
2 denote the 5-dimensional real vector space R5 with the canonical inner

product of signature (2, 3) given by

g̃(x, y) = 〈x, y〉 = −x1y1 − x2y2 + x3y3 + x4y4 + x5y5.

We consider an oriented hypersurface M of E5
2 with index 2. Let N be its

unit normal vector associated with the orientation of M . We define the shape
operator S of M by the Weingarten formula

∇̃XN = −SX,

where X is a vector field tangent to M and ∇̃ denotes the Levi-Civita connection
of E5

2. Let ∇ stands for the Levi-Civita connection of M with respect to the
induced metric on M , then the Gauss formula is given by

∇̃XY = ∇XY + h(X,Y )

where h is the second fundamental form of M . Note that h and S are related
with the equation

〈SX, Y 〉 = 〈h(X,Y ), N〉. (2.1)

The eigenvalues of S are called principal curvatures of M . Corresponding to
every principal curvature k, we have algebraic multiplicity and geometric multi-
plicity. Algebraic multiplicity ν is the exponent of (x−−k) in the characteristic
polynomial and geometric multiplicity µ is the dimension of the eigenspace
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Tk = {X ∈ TxM : SX = kX}.

A principal curvature k is called diagonalizable if ν = µ. The hypersurface M
is called biconservative if it satisfies

S(∇H) = −2H∇H. (BC)

Remark 2.1. If M has constant mean curvature, then (BC) is satisfied trivially.
Hence, in the remaining part of the paper, we will assume that ∇H does not
vanish on M , i.e., there exists a vector field X on M such that X(H) 6= 0.

On the other hand, since the ambient space E5
2 is a flat space, its curvature

tensor R̃ vanishes identically. Thus, Gauss and Codazzi equations become(
R̃(X,Y )Z

)T
= 0, and

(
R̃(X,Y )Z

)⊥
= 0,

respectively, for any vector fields X,Y, Z tangent to M .

2.2 Shape operator of hypersurfaces with index 2 in E5
2

In this section, we consider canonical forms of the shape operator index 2
hypersurfaces in the pseudo-Euclidean space E5

2.
By a frame field in a hypersurfaceM of E5

2, we mean a base field {e1, e2, e3, e4}
of the tangent bundle of M . We put εi = 〈ei, ei〉 ∈ {−1, 0, 1}. Furthermore, we
define the connection forms ωij corresponding to a given frame field by

ωij(ek) = 〈∇ekei, ej〉.

Now, it is well-known that shape operator S is symmetric because of (2.1). On
the other hand, there is a well-known theorem that a symmetric operator in
a positive definite vector space is diagonalizable over R. The situation is more
complicated if the metric is not definite, and the complete answer is given by
the following theorem of Petrov [6].

Theorem 2.2. (Principal Axis Theorem for a Tensor [6]) In a vector
space V n with a non- degenerate metric g every symmetric operator S can be
put into the following form:

S =



Bp1

.
.
.
Bpk

C2t1

.
.
.
C2tm


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where Bpi is pi×pi, C2tj is 2tj×2tj and
∑
pi+2

∑
tj = n. This is with respect

to a basis for which the inner product has the form

gp1

.
.
.
gpk

g2t1
.
.
.
g2tm



Bpi
=



liλi li
.

. .
. .

.

. .
. .
. li
liλi



C2j =



αj βj 1 0
−βj αj 0 1

αj βj 1 0
−βj αj 0 1

.
.

.
.
αj βj
−βj αj


and

gpi
=


li

.
.

.
li

, g2tj =



1 0
0 −1

.
.

.
1 0
0 −1


.

Now, with the help of Theorem 2.2 and by choosing an appropriate base
field {e1, e2, e3, e4} of the tangent bundle of M , we obtain that the possible
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canonical forms of the shape operator S of E5
2 can have one of the following

forms. Note that in each cases below, g denotes the induced metric tensor of
M , i.e., gij = 〈ei, ej〉.

Case I. S =


k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

 , g =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ;

Case II. S =


k1 1 0 0
0 k1 0 0
0 0 k3 0
0 0 0 k4

 , g =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1

;

Case III. S =


k1 1 0 0
0 k1 0 0
0 0 k3 1
0 0 0 k3

 , g =


0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0

;

Case IV. S =


k1 1 0 0
0 k1 0 0
0 0 k3 β1
0 0 −β1 k3

 , g =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1

;

Case V. S =


k1 0 1 0
0 k1 0 0
0 −1 k1 0
0 0 0 k4

 , g =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1

;

Case VI. S =


k1 β1 0 0
−β1 k1 0 0

0 0 k3 β2
0 0 −β2 k3

 , g =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

;

Case VII. S =


k1 β1 1 0
−β1 k1 0 1

0 0 k1 β1
0 0 −β1 k1

 , g =


0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

;

Case VIII. S =


k1 0 0 0
0 k2 0 0
0 0 k3 β1
0 0 −β1 k3

 , g =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

;

Case IX. S =


k1 0 1 0
0 k1 0 0
0 0 k1 1
0 1 0 k1

 , g =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

;
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for some smooth functions k1, k2, k3, k4, β1, β2.

3 Recent Results about Biconservative
Hypersurfaces

3.1 Shape operator of biconservative hypersurfaces in
Minkowski spaces.

The second named author obtained the following results by considering the
shape operator of biconservative hypersurfaces in a Minkowski space of arbitrary
dimension (See [7, Theorem 4.1]).

Theorem 3.1. [7] Let M be a hypersurface in the Minkowski space E4
1, S its

shape operator and H its mean curvature. Assume that ∇H is light-like and S
has the minimal polynomial

P (λ) =

t∏
i=1

(λ− k1)2(λ− k2)(λ− k3) · · · (λ− kt)

for some t. If t ≤ 5, then M is not biconservative.

On the other hand, in [1], Deepika considered hypersurface with complex
principle curvature in an arbitrary Minkowski space and obtained the following
result.

Theorem 3.2. [1] Let Mn
1 in En+1

1 be a biconservative Lorentz hypersurface
having non diagonal shape operator with complex eigenvalues and with at most
five distinct principal curvatures. Then Mn

1 has constant mean curvature.

By combining these results, we would like to state the following result on
the shape operator of biconservative hypersurface in E4

1.

Theorem 3.3. Let M be a hypersurface in E4
1 and H its mean curvature. Then

by choosing an appropriated frame field {e1, e2, e3} the matrix representation of
the shape operator S of M can have one of the following two canonical forms

Case 1. S =

 − 3ε
2 H

k2
3
2 (2 + ε)H − k2

 for a function k2,

Case 2. S =

 − 3H
2

9H
4 1

9H
4

 ,

(3.1)

where e1 is proportional to ∇H and ε is the signature of the normal of M , i.e.,

ε =

{
−1 if M is Riemannian
1 if M is Lorentzian.
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At this instant, we would like to mention that the complete classification of
biconservative hypersurfaces, given in Case 1 of (3.1), is obtained by Yu Fu and
the second named author in [4] (See Sect. 3.2). However, the following problem
is still open.

Problem 1. Classify all biconservative hypersurfaces in E4
1 with the shape oper-

ator given in the Case 2 of (3.1).

3.2 Biconservative hypersurfaces in Minkowski spaces.

In [2], Yu Fu obtained the following results.

Proposition 3.4. [2] Let M be a nondegenerate biconservative surface im-
mersed in the 3-dimensional Minkowski space E3

1. Then the immersed surface
M is either a CMC surface or locally given by one of the following eight surfaces.

1. A timelike surface of revolution with spacelike axis, given by

x(s, t) = (f(s), s cosh t, s sinh t) (3.2)

where s ∈ (27,+∞) and

f(s) =
9

2
(s

1
3

√
s

2
3 − 9 + 9In(s

1
3 +

√
s

2
3 − 9)).

2. A spacelike surface of revolution with spacelike axis, given by

x(s, t) = (f(s), s sinh t, s cosh t) (3.3)

where s ∈ (0, 27) and

f(s) =
81

2
arcsin

1

3
s

1
3 − 9

2
s

1
3

√
9− s 2

3 .

3. A spacelike surface of revolution with timelike axis, given by

x(s, t) = (s cos t, s sin t, f(s)), (3.4)

where s ∈ (0,+∞) and

f(s) =
9

2
(s

1
3

√
s

2
3 + 9− 9In(s

1
3 +

√
s

2
3 + 9)).

4. A spacelike surface of revolution with lightlike axis, given by

x(s, t) = (
1

2
st2 − 1

30
s

5
3 − 1

2
s, st,

1

2
st2 − 1

30
s

5
3 +

1

2
s), (3.5)

where s ∈ (0,+∞).
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5. A timelike surface of revolution with spacelike axis, given by

x(s, t) = (f(s), s sinh t, s cosh t), (3.6)

where s ∈ (0,+∞) and

f(s) =
9

2
(s

1
3

√
s

2
3 + 9− 9In(s

1
3 +

√
s

2
3 + 9)).

6. A timelike surface of revolution with timelike axis, given by

x(s, t) = (s cos t, s sin t, f(s)), (3.7)

where s ∈ (0, 27) and

f(s) =
81

2
arcsin

1

3
s

1
3 − 9

2
s

1
3

√
9− s 2

3 .

7. A timelike surface of revolution with lightlike axis, given by

x(s, t) = (
1

2
st2 +

1

30
s

5
3 − 1

2
s, st,

1

2
st2 +

1

30
s

5
3 +

1

2
s), (3.8)

where s ∈ (0,+∞).

8. A null sroll with non-constant mean curvature.

In [3], Yu Fu give a complete explicit classification of biconservative surfaces
in de Sitter 3-spaces and anti-de Sitter 3-spaces. He obtained the following
results.

Proposition 3.5. [3] Let M be a nondegenerate bi-conservative surface im-
mersed in the 3-dimensional de Sitter space S31(1) ∈ E4

1. Then the immersed
surface M is either a CMC surface or locally given by one of the following nine
surfaces.

1. A timelike rotational surface, given by

x(s, t) = (s sinh t, s cosh t,
√

1− s2 cos f,
√

1− s2 sin f), (3.9)

where s ∈ (0, 1) and

f(s) = ±
∫

3s−
1
3

(1− s2)
√

1− 9s−
2
3 − s2

ds.

2. A spacelike rotational surface, given by

x(s, t) = (s cosh t, s sinh t,
√

1 + s2cosf,
√

1 + s2sinf), (3.10)

where s ∈ (0,+∞) and

f(s) = ±
∫

3s−
1
3

(1 + s2)
√

9s−
2
3 − s2 − 1

ds.
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3. A spacelike rotational surface, given by

x(s, t) = (
√

1− s2 sinh f,
√

1− s2 cosh f, scost, ssint), (3.11)

where s ∈ (0, 1) and

f(s) = ±
∫

3s−
1
3

(1− s2)
√

1 + 9s−
2
3 − s2

ds.

4. A spacelike rotational surface, given by

x(s, t) = (
√
s2 − 1 cosh f,

√
s2 − 1 sinh f, scost, ssint), (3.12)

where s ∈ (1,+∞) and

f(s) = ±
∫

3s−
1
3

(s2 − 1)
√

1 + 9s−
2
3 − s2

ds.

5. A spacelike rotational surface, given by

x(s, t) = (
1

2
(st2 + sf2 − 1

s
+ s),

1

2
(st2 + sf2 − 1

s
− s), sf, st) (3.13)

where s ∈ (0, 3
3
4 ) and

f(s) =

∫
3

s2
√

9− s− 8
3

ds.

6. A timelike rotational surface, given by

x(s, t) = (s cosh t, s sinh t,
√

1 + s2cosf,
√

1 + s2sinf), (3.14)

where s ∈ (0,+∞) and

f(s) = ±
∫

3s−
1
3

(1 + s2)
√

9s−
2
3 + s2 + 1

ds.

7. A timelike rotational surface, given by

x(s, t) = (
√

1− s2 sinh f,
√

1− s2 cosh f, scost, ssint), (3.15)

where s ∈ (0, 1) and

f(s) = ±
∫

3s−
1
3

(1− s2)
√

9s−
2
3 + s2 − 1

ds.
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8. A timelike rotational surface, given by

x(s, t) = (
√
s2 − 1 cosh f,

√
s2 − 1 sinh f, scost, ssint), (3.16)

where s ∈ (1,+∞) and

f(s) = ±
∫

3s−
1
3

(s2 − 1)
√

9s−
2
3 + s2 − 1

ds.

9. A timelike rotational surface, given by

x(s, t) = (
1

2
(st2 + sf2 − 1

s
+ s),

1

2
(st2 + sf2 − 1

s
− s), sf, st) (3.17)

where s ∈ (0,+∞) and

f(s) =

∫
3

s2
√

9 + s−
8
3

ds.

Proposition 3.6. [3] Let M be a nondegenerate bi-conservative surface im-
mersed in the 3-dimensional anti-de Sitter space H3

1(−1) ∈ E4
2. Then the im-

mersed surface M is either a CMC surface or locally given by one of the following
eleven surfaces.

1. A timelike rotational surface, given by

x(s, t) = (s sinh t,
√

1 + s2 cosh f, s cosh t,
√

1 + s2 sinh f), (3.18)

where s ∈ (0,+∞) and

f(s) = ±
∫

3s−
1
3

(1 + s2)
√

1− 9s−
2
3 + s2

ds.

2. A spacelike rotational surface, given by

x(s, t) = (s cosh t,
√

1− s2 cosh f, s sinh t,
√

1− s2 sinh f), (3.19)

where s ∈ (0, 1) and

f(s) = ±
∫

3s−
1
3

(1− s2)
√

9s−
2
3 + s2 − 1

ds.

3. A spacelike rotational surface, given by

x(s, t) = (s cosh t,
√
s2 − 1 sinh f, s sinh t,

√
s2 − 1 cosh f), (3.20)

where s ∈ (1,+∞) and

f(s) = ±
∫

3s−
1
3

(s2 − 1)
√

9s−
2
3 + s2 − 1

ds.

175



4. A spacelike rotational surface, given by

x(s, t) = (
√

1 + s2cosf,
√

1 + s2sinf, scost, ssint), (3.21)

where s ∈ (0,+∞) and

f(s) = ±
∫

3s−
1
3

(1 + s2)
√

1 + 9s−
2
3 − s2

ds.

5. A spacelike rotational surface, given by

x(s, t) = (scost, ssint,
√
s2 − 1cosf,

√
s2 − 1sinf), (3.22)

where s ∈ (1,+∞) and

f(s) = ±
∫

3s−
1
3

(s2 − 1)
√
s2 − 9s−

2
3 − 1

ds.

6. A spacelike rotational surface, given by

x(s, t) = (
1

2
(st2 − sf2 +

1

s
+ s), sf,

1

2
(st2 − sf2 +

1

s
− s), st) (3.23)

where s ∈ (0,+∞) and

f(s) =

∫
3

s2
√

9 + s
8
3

ds.

7. A timelike rotational surface, given by

x(s, t) = (
1

2
(st2 + sf2 +

1

s
+ s), sf,

1

2
(st2 + sf2 +

1

s
− s), sf), (3.24)

where s ∈ (3
3
4 ,+∞) and

f(s) =

∫
3

s2
√
s

8
3 − 9

ds.

8. A timelike rotational surface, given by

x(s, t) = (s cosh t,
√

1− s2 cosh f, s sinh t,
√

1− s2 sinh f), (3.25)

where s ∈ (0, 1) and

f(s) = ±
∫

3s−
1
3

(1− s2)
√

9s−
2
3 − s2 + 1

ds.

176



9. A timelike rotational surface, given by

x(s, t) = (s cosh t,
√
s2 − 1 sinh f, s sinh t,

√
s2 − 1 cosh f), (3.26)

where s ∈ (1,+∞) and

f(s) = ±
∫

3s−
1
3

(s2 − 1)
√

9s−
2
3 − s2 + 1

ds.

10. A timelike rotational surface, given by

x(s, t) = (
√

1 + s2cosf,
√

1 + s2sinf, scost, ssint), (3.27)

where s ∈ (0,+∞) and

f(s) = ±
∫

3s−
1
3

(1 + s2)
√

9s−
2
3 − s2 − 1

ds.

11. A timelike rotational surface, given by

x(s, t) = (
1

2
(st2 − sf2 +

1

s
+ s), sf,

1

2
(st2 − sf2 +

1

s
− s), st) (3.28)

where s ∈ (0, 3
3
4 ) and

f(s) =

∫
3

s2
√

9− s 8
3

ds.

Further, in [4], the author and Yu Fu considered biconservative hypersurfaces
in the Minkowski 4-space with diagonalizable shape operator. They obtained
the following results.

Proposition 3.7. [4] Let M be a hypersurface in E4
1 given by

x(s, t, u) =

(
1

2
s(t2 + u2) + au2 + s+ φ(s), st, (s+ 2a)u,

1

2
s(t2 + u2) + au2 + φ(s)

)
, a 6= 0.

(3.29)

Then, M is biconservative if and only if either M is Riemannian and

φ(s) = c1

(
ln(s+ 2a)− ln s− a

s
− a

s+ 2a

)
− s

2

or it is Lorentzian and

φ(s) = c1

s∫
s0

(ξ(ξ + 2a))
2/3

dξ − s

2
,

where c1 6= 0 and s0 are some constants.
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Theorem 3.8. [4] Let M be a hypersurface in E4
1 with diagonalizable shape

operator and three distinct principal curvatures. Then M is biconservative if
and only if it is congruent to one of hypersurfaces

1. A generalized cylinder M2
0 × E1

1 where M is a biconservative surface in
E3;

2. A generalized cylinder M2
0 ×E1 where M is a biconservative Riemannian

surface in E3
1;

3. A generalized cylinder M2
1 × E1, where M is a biconservative Lorentzian

surface in E3
1;

4. A Rimannian surface given by

x(s, t, u) = (s cosh t, s sinh t, f1(s) cosu, f1(s) sinu) (3.30)

for a function f1 satisfying

f ′′1
f ′21 − 1

=
f1f
′
1 + s

sf1
;

5. A Lorentzian surface with the parametrization given in (3.30) for a func-
tion f1 satisfying

−3f ′′1
f ′21 − 1

=
f1f
′
1 + s

sf1
;

6. A Rimannian surface given by

x(s, t, u) = (s sinh t, s cosh t, f2(s) cosu, f2(s) sinu) (3.31)

for a function f2 satisfying

f ′′2
f ′22 + 1

=
f2f
′
2 + s

sf2
;

7. A surface given in Proposition 3.7.

3.3 Biconservative Hypersurfaces in E5
2

In [8], we study biconservative hypersurfaces of index 2 in E5
2 and obtain the

complete classification of biconservative hypersurfaces with diagonalizable shape
operator at exactly three distinct principal curvatures. The results are following.

Theorem 3.9. [8] Let M be an oriented biconservative hypersurface of index 2
in the pseudo-Euclidean space E5

2. Assume that its shape operator has the form

S = diag(k1, 0, 0, k4), k4 6= 0.

Then, it is congruent to one of the following eight type of generalized cylinders
over surfaces for some smooth functions φ = φ(s) and ψ = ψ(s).
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(i). x(s, t, u, v) = (t, u, φ cos v, φ sin v, ψ), φ′2 + ψ′2 = 1;

(ii). x(s, t, u, v) = (φ sinh v, t, u, φ cosh v, ψ), φ′2 + ψ′2 = 1;

(iii). x(s, t, u, v) = (ψ, t, u, φ cos v, φ sin v), φ′2 − ψ′2 = −1;

(iv). x(s, t, u, v) = (φ cosh v, t, u, φ sinh v, ψ), φ′2 − ψ′2 = 1;

(v). x(s, t, u, v) =

(
v2s

2
+ ψ + s, t, u, vs,

v2s

2
+ ψ

)
, 1− 2ψ′ < 0;

(vi). x(s, t, u, v) = (φ cos v, φ sin v, t, u, ψ), φ′2 − ψ′2 = 1;

(vii). x(s, t, u, v) = (φ sinh v, ψ, t, u, φ cosh v), φ′2 − ψ′2 = −1;

(viii). x(s, t, u, v) =

(
sv2

2
+ ψ, sv, t, u,

sv2

2
+ ψ + s

)
, 1 + 2ψ′ < 0.

Theorem 3.10. [8] Let M be an oriented hypersurface of index 2 in the pseudo-
Euclidean space E5

2. Assume that its shape operator has the form

S = diag(k1, k2, k2, 0), k2 6= 0.

Then, it is congruent to one of the following eight type of cylinders for some
smooth functions φ = φ(s) and ψ = ψ(s).

(i). x(s, t, u, v) = (v, φ cosh t, φ sinh t cosu, φ sinh t sinu, ψ), φ′2 − ψ′2 = 1;

(ii). x(s, t, u, v) = (v, ψ, φ cos t, φ sin t cosu, φ sin t sinu), φ′2 − ψ′2 = −1;

(iii). x(s, t, u, v) = (φ cosh t sinu, φ cosh t cosu, φ sinh t, ψ, v), φ′2 − ψ′2 = 1;

(iv). x(s, t, u, v) = (ψ, φ sinh t, φ cosh t cosu, φ cosh t sinu, v), φ′2 − ψ′2 = −1;

(v). x(s, t, u, v) = (v, φ sinh t, φ cosh t cosu, φ cosh t sinu, ψ), φ′2 + ψ′2 = 1;

(vi). x(s, t, u, v) = (φ sinh tcosu, φ sinh t sinu, φ coshu, ψ, v), φ′2 + ψ′2 = 1;

(vii). x(s, t, u, v) =

(
s(t2 + u2)

2
+ ψ, v, st, su,

s(t2 + u2)

2
+ ψ − s

)
, 1 − 2ψ′ <

0;

(viii). x(s, t, u, v) =

(
s(t2 − u2)

2
+ ψ, st, su, v,

s(t2 − u2)

2
+ ψ + s

)
, 1 + 2ψ′ <

0.

Theorem 3.11. [8] Let M be an oriented hypersurface of index 2 in the pseudo-
Euclidean space E5

2. Assume that its shape operator has the form

S = diag(k1, k2, k2, k4), k4 6= k2

for some non-vanishing smooth functions k1, k2, k4. Then, it is congruent to one
of the following eight type of hypersurfaces for some smooth functions φ1 = φ1(s)
and φ2 = φ2(s).
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(i). x(s, t, u, v) = (φ2 sinh v, φ1 cosh t, φ1 sinh t cosu, φ1 sinh t sinu, φ2 cosh v) , φ′21 −
φ′22 = 1;

(ii). x(s, t, u, v) = (φ2 cos v, φ2 sin v, φ1 cos t, φ1 sin t cosu, φ1 sin t sinu) , φ′21 −
φ′22 = −1;

(iii). x(s, t, u, v) = (φ1 cosh t sinu, φ1 cosh t cosu, φ1 sinh t, φ2 cos v, φ2 sin v) , φ′21 −
φ′22 = 1;

(iv). x(s, t, u, v) = (φ2 sinh v, φ1 sinh t, φ1 cosh t cosu, φ1 cosh t sinu, φ2 cosh v) , φ′21 +
φ′22 = 1;

(v). x(s, t, u, v) = (φ2 cosh v, φ1 sinh t, φ1 cosh t cosu, φ1 cosh t sinu, φ2 sinh v) , φ′21 −
φ′22 = −1;

(vi). x(s, t, u, v) = (φ1 sinh tcosu, φ1 sinh t sinu, φ1 coshu, φ2 cos v, φ2 sin v) , φ′21 +
φ′22 = 1;

(vii). A hypersurface given by

x(s, t, u, v) =
(s

2

(
t2 + u2 − v2

)
− av2 + ψ, v(2a+ s), st, su,

s

2

(
t2 + u2 − v2

)
− av2 + ψ − s

) (3.32)

for a non-zero constants a and a smooth function ψ = ψ(s) such that
1− 2ψ′ < 0;

(viii). A hypersurface given by

x(s, t, u, v) =

(
s
(
t2 − u2 − v2

)
2

+ av2 + ψ, st, su, v(s− 2a),

s
(
t2 − u2 − v2

)
2

+ av2 + ψ + s

) (3.33)

for a non-zero constants a and a smooth function ψ = ψ(s̃) such that
1 + 2ψ′ < 0.

4 Shape operator of biconservative
hypersurfaces of index 2 in E5

2

In this section, we only consider hypersurfaces with non-constant mean curva-
ture. Before we proceed, we would like to mention that in [8], authors considered
hypersurfaces of index 2 in E5

2. It is proved that if ∇H is assumed not to be a
light-like vector, then the shape operator of a biconservative hypersurface has
one of the four possible canonical forms given below.
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Lemma 4.1. [8] Let M be a hypersurface of index 2 in E5
2 with H as its (first)

mean curvature. Assume that ∇H is not light-like. If M is biconservative, then
with respect to a suitable frame field {e1 = ∇H

‖∇H‖ , e2, e3, e4}, its shape operator

S has one of the following forms:

Case I. S =


−2H 0 0 0

0 k2 0 0
0 0 k3 0
0 0 0 k4

 ,

Case II. S =


−2H 0 0 0

0 k2 1 0
0 0 k2 0
0 0 0 k4

 ,

Case III. S =


−2H 0 0 0

0 k2 −ν 0
0 ν k2 0
0 0 0 k4

 ,

Case IV. S =


−2H 0 0 0

0 2H 0 0
0 0 2H −1
0 1 0 2H

 ,

(4.1)

for some smooth functions k2, k3, k4, ν. In Cases I and III, the induced metric
gij = g(ei, ej) = 〈ei, ej〉 of M is gij = εiδij ∈ {−1, 0, 1}, while in Cases II and
IV, it is given by

g =


ε1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −ε1

 .

4.1 Main Results

In this subsection, we consider the shape operator of a biconservative hyper-
surface in E5

2 with an additional hypothesis of being light-like of gradient of its
mean curvature. Our aim is to investigate possible canonical forms of the shape
operator S of M under the following assumption.
Assumption. ∇H is light-like, where H is the mean curvature of the bicon-
servative hypersurface M with index 2.

By the above assumption, (BC) implies that ∇H is an eigenvector of S
with corresponding eigenvalue −2H. It is very easy to observe that the matrix
representation of S with respect to a suitable frame field {e1, e2, e3, e4} can not
be one of Case VI, Case VII or Case IX given in Sect. 2.2.

First, we obtain the following result.

Proposition 4.2. The subspace ker(S − 2HI) is degenerate, where I is the
identity operator acting on the space of tangent vector fields of M .
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Proof. Let us consider, the subspace ker(S − 2HI) is non-degenerate. Since
∇H ∈ Ω = ker(S − 2H) and it is light-like then the index of Ω should be at
least 1. Thus, there exists two unit vector fields X,Y such that SX = −2HX,
SY = −2HY , ∇H = τ(X−Y ) for a smooth function τ and 〈X,X〉 = −〈Y, Y 〉 =
1. Furthermore, we have X(H) 6= 0 and Y (H) 6= 0. However, this contradicts

with the Codazzi equation
(
R̃(X,Y )X

)⊥
= 0 which yields X(H) = 0.

By using this result, we conclude that the matrix representation of S with
respect to a suitable frame field {e1, e2, e3, e4} can not be one of Case I, Case
VIII or Case II with k3 = k4 = −2H. Hence, we have the following result.

Lemma 4.3. The matrix representation of S with respect to a suitable frame
field {e1, e2, e3, e4} is one of the following four forms, where we assume e1 to
be proportional to ∇H and g denotes the induced metric tensor of M , i.e.,
gij = 〈ei, ej〉.

Case I. S =


−2H 1 0 0

0 −2H 0 0
0 0 k3 0
0 0 0 8H − k3

 , g =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1


for a smooth function k3;

Case II. S =


−2H 1 0 0

0 −2H 0 0
0 0 4H 1
0 0 0 4H

 , g =


0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0

;

Case III. S =


−2H 1 0 0

0 −2H 0 0
0 0 4H β1
0 0 −β1 4H

 , g =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1


for a smooth function β1;

Case IV. S =


−2H 0 1 0

0 −2H 0 0
0 −1 −2H 0
0 0 0 10H

 , g =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1

.

Now, since e1 is proportional to ∇H, we have

e1(H) = e3(H) = e4(H) = 0. (4.2)

Proposition 4.4. There exists no hypersurfaces of index 2 in E5
2 with shape

operator given by Case II of Lemma 4.3.

Proof. Assume that the shape operator of M is as given in Case II of Lemma
4.3. Then, the second fundamental form of M satisfies

h(e1, e2) = 2HN, h(e2, e2) = −N, h(e3, e4) = −4HN, h(e4, e4) = −N
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and for all other cases, we have h(ei, ej) = 0.
Note that we have

∇eke1 =− ω12(ek)e1 − ω14(ek)e3 − ω13(ek)e4,

∇eke2 =ω12(ek)e2 − ω24(ek)e3 − ω23(ek)e4,

∇eke3 =ω23(ek)e1 + ω13(ek)e2 − ω34(ek)e3,

∇eke4 =ω24(ek)e1 + ω14(ek)e2 + ω34(ek)e4.

(4.3)

Moreover, because of (4.2), we have [e1, e3](H) = [e1, e4](H) = [e3, e4](H) = 0
which give

ω13(e1) = ω14(e1) = 0, ω14(e3) = ω13(e4). (4.4)

We apply the Codazzi equation
(
R̃(ei, ej)ek

)⊥
= 0 for each triplet (i, j, k)

in the set {(3, 1, 2), (3, 2, 1), (4, 1, 2), (4, 2, 1), (1, 4, 3), (1, 3, 4), (3, 2, 3), (4, 3, 4)}
and combine equations obtained with (4.4) and (4.3) to get

ω23(e1) = ω13(e2) = ω24(e1) = ω14(e2) =0,

ω34(e3) = ω13(e4) = ω13(e3) = ω23(e3) =0.

Therefore, from (4.3) we have

ω13 = 0, ∇e4e1 = −ω12(e4)e1 − ω14(e4)e3, ∇e2e1 = −ω12(e2)e1,

∇e2e3 = ω23(e2)e1 − ω34(e2)e3.
(4.5)

However, the Gauss equation
(
R̃(e2, e4)e1

)T
= 0 implies H ≡ 0 on M which

yields a contradiction.

Similarly, we have

Proposition 4.5. There exists no hypersurfaces of index 2 in E5
2 with shape

operator given by Case IV of Lemma 4.3.

Proof. Assume that the shape operator of M is as given in Case III of Lemma
4.3. Then, the second fundamental form of M satisfies

h(e1, e2) = 2HN, h(e2, e3) = −N, h(e3, e3) = −2HN, h(e4, e4) = −10HN

and for all other cases, we have h(ei, ej) = 0. Similar to proof of Proposition
4.4 we have (4.4).

Note that we have

∇eke1 =− ω12(ek)e1 + ω13(ek)e3 − ω14(ek)e4,

∇eke2 =ω12(ek)e2 + ω23(ek)e3 − ω24(ek)e4,

∇eke3 =ω23(ek)e1 + ω13(ek)e2 − ω34(ek)e4,

∇eke4 =ω24(ek)e1 + ω14(ek)e2 − ω34(ek)e3.

(4.6)
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We apply the Codazzi equation
(
R̃(ei, ej)ek

)⊥
= 0 for each triplet (i, j, k)

in the set {(3, 4, 3), (4, 1, 4), (4, 3, 4), (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4),
(1, 4, 3)} and combine equations obtained with (4.4) and (4.6) to get

ω12(e1) = ω13(e3) = ω34(e1) = ω13(e4) = ω34(e3) =0,

ω14(e4) = ω34(e4) = ω14(e2) = ω24(e1) = 0.

By combining these equations with (4.6), we obtain

∇e1e1 = 0, ∇e2e1 = ω13(e2)e3 − ω12(e2)e1, ∇eie1 = −ω12(ei)e1,

∇e1e2 = ω23(e1)e3, ∇eje2 = ω12(ej)e2 + ω23(ej)e3 − ω24(ej)e4,

∇eke3 = ω23(ek)e1, ∇e2e3 = ω23(e2)e1 + ω13(e2)e2 − ω34(e2)e4,

∇e1e4 = 0,∇e2e4 = ω24(e2)e1 − ω34(e2)e3, ∇eie4 = ω24(ei)e1.

for i = 3, 4, j = 2, 3, 4 and k = 1, 3, 4.
However, the Gauss equations R(e3, e4, e4, e3) = 20H2 implies H = 0 on M

which yields a contradiction.

Thus, by combining Lemma 4.1, Lemma 4.3, Proposition 4.4 and Proposition
4.5, we obtain the following result.

Theorem 4.6. Let M be a hypersurface of index 2 in E5
2 with H as its (first)

mean curvature. If M is biconservative and ∇H is a lightlike vector, then with
respect to a suitable frame field {e1, e2, e3, e4}, its shape operator S has one of
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the following six forms, where e1 is proportional to ∇H

Case I. S =


−2H 0 0 0

0 k2 0 0
0 0 k3 0
0 0 0 k4

 ,

Case II. S =


−2H 0 0 0

0 k2 1 0
0 0 k2 0
0 0 0 k4

 ,

Case III. S =


−2H 0 0 0

0 k2 −ν 0
0 ν k2 0
0 0 0 k4

 ,

Case IV. S =


−2H 0 0 0

0 2H 0 0
0 0 2H −1
0 1 0 2H

 ,

Case V. S =


−2H 1 0 0

0 −2H 0 0
0 0 k3 0
0 0 0 8H − k3

 ,

Case VI. S =


−2H 1 0 0

0 −2H 0 0
0 0 4H β1
0 0 −β1 4H



(4.7)

for some smooth functions k2, k3, k4, ν. In Cases I and III, the induced metric
gij = g(ei, ej) = 〈ei, ej〉 of M is given by gij = εiδij ∈ {−1, 1}, in Cases II and
IV, it is given by

g =


ε1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −ε1


for ε = ±1, whereas in Cases V and VI, it takes the form

g =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1

 .
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1 Introduction

The affine geometry of a manifold (M,∇), endowed with a symmetric linear con-
nection, induces a (semi-)Riemannian geometry on the total space of the cotan-
gent bundle T ∗M , given by the Riemann extension g introduced by Patterson-
Walker [8].

Osserman problem, Walker manifolds, almost para-Hermitian manifolds,
non-Lorentzian geometry and so on, are related to the Riemann extension. For
some other applications, see [5].

The Riemann extension is a metric of signature (n, n) on T ∗M which was
generalized by Kowalski and Sekizawa to the natural Riemann extension (see
[7], [9] and for the notion of naturality see [6]). Another generalization is the
deformed Riemann extension (see [4]).

In [2], the harmonic functions were characterized with respect to both natural
Riemann extension and (classical) Riemann extension on the phase space T ∗M .

A special class of harmonic maps is given by harmonic morphisms, see [1].
A harmonic morphism between (semi-)Riemannian manifolds is defined as a
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smooth map between (semi-)Riemannian manifolds which pulls back (local)
harmonic functions from the target manifold to (local) harmonic functions on
the domain manifold.

The present paper gives some applications of the deformed and natural Rie-
mann extensions on T ∗M . Our main goal is to provide some harmonic mor-
phisms with respect to natural Riemann extension on T ∗M .

Note: This paper is an announcement of the forthcoming paper [3]. The
geometric structures, induced from the base manifold M to the total space of its
cotangent bundle T ∗M , can also be seen as some extensions of several geometric
objects from a submanifold to the whole space.

2 Preliminaries

The technique of lifting several geometric objects from a base n-dimensional
manifold M to its cotangent bundle T ∗M goes back to the last century, for
which we cite [10]. The natural projection p : T ∗M →M , p(x,w) = x associates
to each local chart (U, x1, . . . , xn) around x ∈ M the corresponding local chart
(p−1(U), x1, . . . , xn, x1∗, . . . , xn∗) around (x,w) ∈ T ∗M . On the cotangent space
(T ∗M)(x,w) at (x,w) of T ∗M one has a canonical basis:

{(∂1)(x,w), . . . , (∂n)(x,w), (∂1∗)(x,w), . . . , (∂n∗)(x,w)},

where ∂i = ∂/∂xi and ∂i∗ = ∂/∂wi, i = 1, n. In local coordinates, the global
defined vertical vector field:

W =

n∑
i=1

wi∂i∗

is of Liouville type.
The vertical lift fv ∈ F(T ∗M) of any function f ∈ F(M) is defined by

fv = f ◦ p. Then the vertical lift Xv is a function on T ∗M associated to the
vector field X ∈ X (M) and defined by:

Xv(x,w) = w(Xx)

at any point (x,w) ∈ T ∗M . When X is written in local coordinates as X =∑n
i=1 ξ

i∂i thenXv can be written in local coordinates asXv(x,w) =
∑n
i=1 wiξ

i(x)
at any point (x,w) ∈ T ∗M .

We note that Xv is not a vector field on T ∗M but Xv is a function preserved
by the action of the canonical vector field W , that is:

W (Xv) = Xv, ∀X ∈ X (M). (2.1)

Proposition 2.1. ([11]) If X and Y are vector fields on T ∗M such that X(Zv) =
Y (Zv), ∀Z ∈ X (M) then X = Y .
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We recall from [10] that the vertical lift αv is a vector field tangent to
T ∗M , associated to any 1-form α ∈ Ω1(M) and defined by αv(Zv) = (α(Z))v,
∀Z ∈ X (M). When α is written in local coordinates as α =

∑n
i=1 αidxi then

αv can be written in local coordinates as αv =
∑n
i=1 αi∂i∗ where we identify

fv = f ◦ p ∈ F(T ∗M) for any f ∈ F(M). Hence αv(fv) = 0, ∀f ∈ F(M). The
complete lift of a vector field X ∈ X (M) is a vector field Xc ∈ X (T ∗M) defined
by:

Xc(Zv) = [X,Z]v, ∀Z ∈ X (M).

When X is written in local coordinates by X =
∑n
i=1 ξ

i∂i then Xc can be
written in local coordinates as:

Xc
(x,w) =

n∑
i=1

ξi(x)(∂i)(x,w) −
n∑

h,i=1

wh(∂iξ
h)(x)(∂i∗)(x,w),

at each point (x,w) ∈ T ∗M .
Then Xc(fv) = (Xf)v, ∀f ∈ F(M) and on T ∗M the Lie bracket satisfies:

[Xc, Y c] = [X,Y ]c, [Xc, αv] = (LXα)v,

[αv, βv] = 0 = [Xc,W ], [αv,W ] = αv,∀X,Y ∈ X (M), α, β ∈ Ω1(M),

where LX denotes the Lie derivative with respect to X.

3 Deformed Riemann extension

If (M,∇) is an n-dimensional manifold endowed with a symmetric linear con-
nection, then the deformed Riemann extension is a semi-Riemannian metric g
of signature (n, n) on the total space of T ∗M defined at any (x,w) ∈ T ∗M by

g(x,w)(X
c, Y c) = −aw(∇XY +∇YX) + Φ(X,Y ) (3.1)

g(Xc, αv) = aα(X), g(αv, βv) = 0, (3.2)

for any vector fields X,Y and any differential 1-forms α, β on M , where a ∈ R∗

and the real function Φ(X,Y ) on T ∗M is symmetric in X and Y . We assume
a > 0.

Remark that the deformed Riemann extension generalizes both the Rie-
mann extension introduced by Patterson, Walker in [8] (when Φ = 0) and also
the natural Riemann extension (see [7] and [9]) when Φ(X,Y ) = bw(X)w(Y ),
∀X,Y ∈ X (M), where b ∈ R.

Proposition 3.1. Let (M,∇) be a manifold endowed with a symmetric lin-
ear connection. Then the total space of its cotangent bundle carries a para-
Hermitian structure (Ga, P̄ ) where Ga is the deformed Riemann extension with
Φa(X,Y ) = a(∇XY +∇YX)v and P̄ is defined by:

P̄Xc = Xc, P̄αv = −αv, ∀X ∈ X (M), α ∈ Ω1(M). (3.3)
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Proof. One can see that P̄ 2 = I and P̄ 6= ±I where I is the identity. We note
that:

Ga(Xc, Y c) = Ga(αv, βv) = 0, Ga(Xc, αv) = aα(X),

∀X,Y ∈ X (M), α, β ∈ Ω1(M). (3.4)

Moreover, P̄ is skew-symmetric with respect to Ga:

Ga(P̄U, P̄V ) = −Ga(U, V ), ∀U, V ∈ X (T ∗M). (3.5)

Hence (Ga, P̄ ) is an almost para-Hermitian structure. Since the Nijenhuis
tensor field of P̄ vanishes identically it follows that P̄ is integrable and therefore
(Ga, P̄ ) is a para-Hermitian structure which complete the proof.

By using a similar but longer computation, we generalize Theorem 5.1 ob-
tained in [2]:

Theorem 3.2. If Xv, Zv ∈ F(T ∗M) are the vertical lifts of the vector field
X,Z ∈ X (M) then:

((grad Zv)Xv)(x,w) =
1

a
{(∇XZ +∇ZX)v − 1

a
Φ(Z,X)}(x,w), (3.6)

where we used the characterization for gradZv given by:

g(gradZv, U) = UZv, ∀U ∈ X (T ∗M).

4 Harmonic maps and morphisms

We recall that a map ϕ : (N,h)→ (Ñ , h̃) between (semi-)Riemannian manifolds
is a harmonic map if the Euler-Lagrange operator τ(ϕ) defined as the trace (with
respect to h) of the second fundamental form ∇dϕ of ϕ vanishes identically, that
is

τ(ϕ) = traceh∇dϕ = 0.

Definition 4.1. A map ϕ : (N,h)→ (Ñ , h̃) between (semi-)Riemannian man-
ifolds is:

(i) a harmonic morphism if for any harmonic function f defined (locally) on

Ñ , its pull-back f ◦ ϕ is a (locally) harmonic function on N .
(ii) horizontally weakly conformal if there exists a function Λ : N → R

(called square dilatation) such that in any local coordinates (y1̃, . . . , yñ) on Ñ
one has:

h(gradϕα, gradϕβ) = Λh̃αβ , α, β = 1, ñ,

see [1].
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Theorem 4.2. Let (M, g) be a Riemannian manifold and let (T ∗M, g) be the
total space of its cotangent bundle endowed with the natural Riemannian ex-
tension constructed with the Levi-Civita connection ∇ of g. For any map
ϕ = (ϕ1, . . . , ϕk) : (M, g) → Rk, its associated map is defined at any point
(x,w) ∈ T ∗M by:

ϕ̃(x,w) = ((gradϕ1)(x,w), . . . , (gradϕk)(x,w)). (4.1)

Then ϕ̃ is a harmonic morphism if and only if ϕ̃ is an eigenmap of the vertical
lift of the Laplacian, i.e.

(∆ϕ)v =
b(n+ 1)

2a
ϕ̃, (4.2)

and (gradϕ1)c, . . . , (gradϕk)c are mutually orthogonal and of the name length.

Proof. Let ∇ be the Levi-Civita connection of g. We take α ∈ Ω1(M) such
that αx = w, (but the proof is independent of the choice of α that satisfies this
condition). From the relation

(gradZv)(x,w) =
1

a
{Zc − 2∇αvZc +

b

a
w(Z)αv}(x,w)

and (2.1) at any (x,w) ∈ T ∗M , we obtain for any set of vector fields {Zi}i=1,k:

ḡ
(
gradZvi , gradZvj

)
(x,w)

=
1

a2
ḡ(Zci − 2∇̄αvZci + cZvi α

v, Zcj − 2∇̄αvZcj

+ cZvj α
v)(x,w)

=
1

a2
{ḡ
(
Zci , Z

c
j

)
− 2ḡ

(
Zci , ∇̄αvZcj

)
+ cZvj ḡ (Zci , α

v)− 2ḡ
(
∇̄αvZci , Z

c
j

)
+ 4ḡ

(
∇̄αvZci , ∇̄αvZcj

)
− 2cZvj ḡ

(
∇̄αvZci , α

v
)

+ cZvi ḡ
(
αv, Zcj

)
− 2cZvi ḡ

(
αv, ∇̄αvZcj

)
+ c2Zvi Z

v
j ḡ (αv, αv)}(x,w) (4.3)

Using local coordinates, we can easily check:

ḡ(W, βv) = ḡ(W,W) = 0, ∀β ∈ Ω1(M). (4.4)

By using the definition of natural Riemann extension, the definition relation
of ∇ and (4.4), we express some of the terms involved in (4.3):

ḡ
(
∇̄αvZci , ∇̄αvZcj

)
(x,w)

= ḡ
(
∇̄αvZci , α

v
)
(x,w)

= ḡ
(
αv, ∇̄αvZcj

)
(x,w)

= ḡ (αv, αv)(x,w) = 0;

ḡ
(
Zci , Z

c
j

)
(x,w)

= −aw
(
∇ZiZj +∇ZjZi

)
x

+ bw (Zi)x w (Zj)x .
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Using the definition formula of ∇, we obtain

ḡ
(
Zci , ∇̄αvZcj

)
(x,w)

= −aαx (∇Zi
Zj)x + bw (Zi)x w (Zj)x

and ḡ (Zci , α
v)(x,w) = aαx (Zi)x where i = 1, k.

By substituting the previous relations (and also the above relations in which
i and j replace each other) into (4.3), we obtain:

ḡ
(
gradZvi , gradZvj

)
(x,w)

=
1

a2
{−aw

(
∇ZiZj +∇ZjZi

)
x

+ bw (Zi)x w (Zj)x

+ 2aw (∇Zi
Zj)x − 2bw (Zi)x w (Zj)x + 2aw

(
∇Zj

Zi
)
x
}

=
1

a2
{
aw
(
∇Zi

Zj +∇Zj
Zi
)
x
− bw (Zi)x w (Zj)x

}
= − 1

a2
ḡ
(
Zci , Z

c
j

)
(x,w)

, i, j = 1, k. (4.5)

Now, Zc1, . . . , Z
c
k are mutually orthogonal and of the same length on (T ∗M, ḡ)

if and only if there exists a real function Λ : T ∗M → R such that ḡ
(
Zci , Z

c
j

)
=

Λδij , i, j = 1, k.
From (4.5), by taking Zi = gradϕi, i = 1, k, we obtain that ϕ is hori-

zontally weakly conformal if and only if (gradϕ1)c, . . . , (gradϕk)c are mutually
orthogonal and of the same length.

We recall from ([2], Corollary 4.2) that the vertical lift Y v of a vector field
Y ∈ X (M) is a harmonic function (with respect to a natural Riemann extension
g) on T ∗M if and only if

(divY )v =
b(n+ 1)

2a
Y v.

Hence ϕ is a harmonic map with respect to g if and only if ϕ is an eigenmap
of the vertical lift of the Laplacian

(∆ϕ)v = ((∆ϕ1)v, . . . , (∆ϕk)v),

i.e. (4.2) is satisfied.
We complete the proof since any map between (semi-)Riemannian manifolds

is a harmonic morphism if and only if it is harmonic and horizontally weakly
conformal see [1].
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1 Introduction

A gauge invariant theory which unifies the gravity and the electromagnetic fields
was first introduced by Weyl in 1918 [13]. For physical reasons, his theory was
not accepted but it remained both as a part of physics and mathematics. Weyl
manifold is a differentiable manifold with a torsion free connection which is
non-metric.

In 1924, Friedmann and Schouten introduced a semi-symmetric linear con-
nection in a differentiable manifold [4]. After that, in 1932, Hayden introduced
the notion of metric connection with torsion in a Riemannian manifold [6].
Moreover, Yano studied semi-symmetric metric connection in a Riemannian
manifold and obtained a result about conformally flatness [14].

The notion of semi symmetric connection was generalized to quarter sym-
metric connection by Golab in 1975 [5]. There are many papers about quarter
symmetric connection not only in Riemannian manifolds but also in Hermitian,
Kähler, Kenmotsu manifolds (see Mishra and Pandey [9], Dwivedi [3], Pusic
[12], Yano and Imai [15]).

In this work, we consider a quarter symmetric connection on Kähler Weyl
manifolds and almost contact Weyl manifolds and examine the properties of
this connection.

2 Preliminaries

A Weyl manifold is a differentiable manifold M of dimension n with a confor-
mal metric tensor g and a symmetric connection D which satisfies, called the
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compatibility condition,
Dkgij = 2ωkgij , (2.1)

where ω is a 1-form. Such a Weyl manifold is denoted by Mn(g, ω). If ω is a
closed form, Mn(g, ω) is conformal to a Riemannian manifold.

Under the conformal change of the metric tensor g,

ğij = λ2gij , λ > 0, (2.2)

the 1-form ω changes by the law

ω̆k = ωk +Dk lnλ. (2.3)

A quantity S is called a satellite of g with weight r if it admits a transfor-
mation of the form

S̆ = λrS, (2.4)

under the change (2.2) of the metric tensor g.
The prolonged (extended) covariant derivative of a satellite S of weight r is

defined by
ḊkS = DkS − rwkS, (2.5)

from which it follows that Ḋkgij = 0 (see [16], [7], [10]).
It is easy to see from (2.1) that

Γi
kl =

{
i

kl

}
− gim(gmkωl + gmlωk − gklωm), (2.6)

where Γi
jk are the coefficients of the Weyl connection D and

{
i
kl

}
are the con-

nection coefficients of the Levi-Civita connection.
The mixed curvature tensor, the covariant curvature tensor, the Ricci tensor

and the scalar curvature for Mn(g, ω) are respectively given by [11]:

vjW p
jkl = (DkDl −DlDk)vp, (2.7)

Whjkl = ghpW
p
jkl, (2.8)

Wij = W p
ijp = ghkWhijk, (2.9)

s = gijWij . (2.10)

By considering (2.7), the explicit form of the mixed curvature tensor W p
jkl for

Mn(g, ω) is
W p

jkl = ∂kΓp
jl − ∂lΓ

p
jk + Γp

hkΓh
jl − Γp

hlΓ
h
jk. (2.11)

The mixed curvature tensor, the covariant curvature tensor and the Ricci
tensor of Mn(g, ω) satisfy the following properties [11]:

Wijkl +Wijlk = 0, W i
ikl = n(Dlωk −Dkωl) = 2nD[lωk], (2.12)

Wijkl +Wjikl = 4gijD[lωk], W[ij] = nD[iωj]. (2.13)
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Let N be an n-dimensional Riemannian manifold endowed with a linear
connection ∇. Then ∇ is said to be quarter symmetric if the torsion tensor T i

jk

of ∇ satisfies
T i
jk = pjA

i
k − pkAi

j , (2.14)

where pk is a 1-form and Aj
i is any (1, 1) tensor field. If Ajk is defined as

Ai
jgjk = Ajk, then

Ajk = Ujk + Vjk, (2.15)

where Ujk and Vjk are respectively symmetric and anti symmetric part of Ajk

[15].

3 Kähler Weyl Manifolds

A Weyl manifold of dimension 2n is called Kähler Weyl if

F i
jF

h
i = −δhj , (3.1)

F t
jF

s
i gts = gji, (3.2)

and
ḊjF

k
i = 0, ∀i, j, k, (3.3)

where F j
i is a (1, 1) tensor field of weight zero and called an almost com-

plex structure, gij is Hermitian metric. Such a manifold will be denoted by
KM2n(g, ω) [2].

The (0, 2) tensor field Fij of weight 2 and (2, 0) tensor field F ij of weight
−2 are, respectively, given by

Fij = F k
i gkj = −Fji (3.4)

and
F ij = F j

kg
ik = −F ji. (3.5)

The contraction of (3.4) on the indices k and i gives F i
i = 0.

Suppose that a Kähler Weyl manifold admits a quarter symmetric linear
connection D̄ with the torsion tensor T̄ and satisfies the following compatibility
condition

D̄kgij = 2ωkgij . (3.6)

If we take Ujk = gjk and Vjk = Fjk in (2.15), then we find that Ak
i = δki + F k

i .
Therefore, the torsion tensor T̄ takes the form

T̄ i
jk = pj

(
δik + F i

k

)
− pk

(
δij + F i

j

)
. (3.7)

We note that the 1-form pk is of zero weight.

Theorem 3.1. On every Kähler Weyl manifold there exists a unique quarter
symmetric linear connection associated to every 1-form p and (1, 1) tensor field
F .
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Proof. Assume that the relation between Γ̄j
mk and Γj

mk is given by

Γ̄j
mk = Γj

mk + U j
mk, (3.8)

where Γ̄j
mk and Γj

mk are respectively the coefficients of D̄ and D, and U j
mk is

any (1, 2) tensor field. Then from (2.1), (3.6) and (3.8), we find that

Uh
ikghj + Uh

jkghi = 0. (3.9)

After permuting the indices i, j and k in the above equation cyclicly and using
some algebraic operations, we obtain

(Uh
ik + Uh

ki)ghj = (Uh
ij − Uh

ji)ghk + (Uh
kj − Uh

jk)ghi

= T̄h
ijghk + T̄h

kjghi. (3.10)

From (3.7) and after some simplifications, we have

U t
ik + U t

ki = pi
(
δtk − F t

k

)
+ pk

(
δti − F t

i

)
− 2ptgik, (3.11)

where pt = pkg
tk. Since T̄ t

ik = U t
ik −U t

ki, by considering the above equation, we
obtain

U t
ik = piδ

t
k − pkF t

i − ptgik. (3.12)

Hence, we find that Γ̄j
mk = Γj

mk + pmδ
j
k − pkF j

m − pjgmk which completes the
proof.

The mixed curvature tensor W̄ i
jkl for D̄ is given by

W̄ i
jkl = ∂kΓ̄i

jl − ∂lΓ̄i
jk + Γ̄m

jl Γ̄
i
mk − Γ̄m

jkΓ̄i
mk. (3.13)

Hence, by considering the definition of Γ̄i
jl and after a long straightforward

calculations, we obtain

W̄ i
jkl = W i

jkl + δilαjk − δikαjl + gjkg
itαtl − gjlgitαtk − 2F i

j Ḋ[kpl]

+ pi (Fjkpl − Fjlpk) + pj
(
F i
kpl − F i

l pk
)
, (3.14)

where αjk = Ḋkpj − pjpk + Fm
j pmpk +

1

2
gjkp

mpm.

Therefore, the covariant curvature tensor W̄ijkl, the Ricci tensor W̄jk and
the scalar curvature s̄ are respectively given by

W̄ijkl = Wijkl + gilαjk − gikαjl + gjkαil − gjlαik + 2FijḊ[kpl]

+ pi (Fjkpl − Fjlpk) + pj (Filpk − Fikpl) , (3.15)

W̄jk = Wjk + (n− 2)αjk + gjkg
ilαil − gjlαik + 2gilFijḊ[kpl]

+ Fjkplp
l − Fjlp

lpk − Flkp
lpj , (3.16)

and
s̄ = s+ 2(n− 1)gjkαjk + 2F lkḊ[kpl]. (3.17)
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Proposition 3.2. The mixed curvature tensor W̄ i
ikl and the covariant curva-

ture tensor W̄ijkl of a Kähler Weyl manifold with a quarter symmetric linear
connection satisfy the following relations:

(i) W̄ijkl + W̄ijlk = 0

(ii) W̄ijkl + W̄jikl = 4gijD[lωk]

(iii) W̄ i
ikl = W i

ikl = 2nD[lωk].

Proof. (i) The covariant curvature tensor W̄ijkl of a Kähler Weyl manifold
endowed with a quarter symmetric linear connection D̄ is given by (3.15). By
changing the indices k and l and then taking the sum of the equations obtained
gives W̄ijkl + W̄ijlk = Wijkl +Wijlk = 0.

(ii) Similarly, if we change the indices k and l in (3.15) and sum up the
obtained equations, then we get W̄ijkl + W̄jikl = Wijkl +Wjikl = 4gijD[lωk].

(iii) Since F i
i = 0, the result follows easily from (3.14).

Theorem 3.3. If the curvature tensor of a Kähler Weyl manifold with a quarter
symmetric linear connection vanishes and the 1-form pk is locally a gradient,
then the connection reduces to the Weyl connection.

Proof. If W̄ijkl = 0 and the 1-form pk is locally a gradient, then (3.15) takes
the form

Wijkl = −gilαjk + gikαjl − gjkαil + gjlαik

− pi (Fjkpl − Fjlpk)− pj (Filpk − Fikpl) . (3.18)

If we permute the indices j, k and l in (3.18) cyclicly, then we obtain two
more equations. Now, by taking the sum of the three equations and taking into
account of the 1st Bianchi Identity for Weyl manifolds, we obtain

0 = gilα[jk] + gijα[kl] + gikα[lj] + Fjkpipl + Fklpipj + Fljpipk. (3.19)

By contracting the above equation with F jlgik, we get for n 6= 2

F jlα[jl] = −pkpk. (3.20)

Since α[jl] =
1

2
(Fjmp

mpl − Flmp
mpj),

−pkpk =
1

2
F jl (Fjmp

mpl − Flmp
mpj)

=
1

2

(
δlmp

mpl + δjmp
mpj

)
= pkpk, (3.21)

from which we find that pk = 0 for positive definite metric tensors belonging
to the conformal class. Now since pk = 0, Γ̄j

mk = Γj
mk + pmδ

j
k − pkF j

m − pjgmk

takes the form Γ̄j
mk = Γj

mk which completes the proof.
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4 Almost Contact Weyl Manifolds

Let M2n+1 be a differentiable manifold of dimension 2n+ 1. An almost contact
structure (φ, ξ, η) on M2n+1 is a triple satisfying the following relations

φjiφ
k
j = −δki + ηiξ

k, (4.1)

ηiξ
i = 1, (4.2)

φji ξ
i = 0, (4.3)

ηiφ
i
j = 0, (4.4)

where φji is a tensor field of type (1, 1), ξi is a vector field and ηi is a 1-form.
Moreover, if there is given a Riemannian metric gij such that

gijφ
i
tφ

j
s = gts − ηtηs, (4.5)

gijξ
j = ηi, (4.6)

then (φ, ξ, η, g) is called an almost contact metric structure on M . A differen-
tiable manifold M2n+1 with almost contact metric structure (φ, ξ, η, g) is called
almost contact metric manifold [1].

It is easy to see that the tensor φij , which is defined by φki gjk = φij , is anti

symmetric and contraction of φji gives φii = 0.
It follows immediately from the equations (4.1), (4.2) and (4.5) that the

(1, 1) tensor field φji , the 1-form ηi and the vector field ξi are weight of 0, 1
and −1, respectively.

LetM2n+1(g, ω) be a Weyl manifold with the connectionD. ThenM2n+1(g, ω)
has an almost contact structure if the following conditions are satisfied in addi-
tion to the conditions (4.1)-(4.6) [8]:

Ḋkgij = 0, Ḋkφ
j
i = 0, Ḋkηi = 0, Ḋkξ

i = 0. (4.7)

Such a manifold is called almost contact Weyl manifold and will be denoted by
ACM2n+1(g, ω).

Now, we consider the manifold ACM2n+1(g, ω) with a quarter symmetric

linear connection D̃ and the torsion tensor T̃ is of the form

T̃ i
jk = qjφ

i
k − qkφij , (4.8)

where the (1, 1) tensor field Aj
i = φji and the 1-form qj = fηj , where f is any

function of weight −1. Here, we also have

D̃kgij = 2ωkgij . (4.9)

Theorem 4.1. On every almost contact Weyl manifold there exists a unique
quarter symmetric linear connection associated to every 1-form q and (1, 1)
tensor field φ.
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Proof. Suppose that the relation between Γ̃j
mk and Γj

mk be

Γ̃j
mk = Γj

mk + U j
mk, (4.10)

where Γ̃j
mk and Γj

mk are the coefficients of the connections D̃ and D, respectively

and U j
mk is any tensor field of type (1, 2).

From (2.1), (4.9) and (4.10) we have

Uh
ikghj + Uh

jkghi = 0. (4.11)

Permuting cyclicly the indices i, j, k and after some modifications, we obtain

(Uh
ik + Uh

ki)ghj = (Uh
ij − Uh

ji)ghk + (Uh
kj − Uh

jk)ghi

= T̃h
ijghk + T̃h

kjghi (4.12)

Using the definition of T̃h
ij and after straightforward calculations, we find that

(Uh
ik + Uh

ki)ghj = −qiφkj − qkφij . (4.13)

Multiplying the last equation by gjt, we have

U t
ik + U t

ki = −qiφtk − qkφti. (4.14)

We conclude from the above equation that

T̃h
ij = U t

ik − U t
ki = qiφ

t
k − qkφti. (4.15)

Hence, we obtain
U t
ik = −qkφti, (4.16)

and therefore
Γ̃j
mk = Γj

mk − qkφ
j
m. (4.17)

The mixed curvature tensor for an almost contact Weyl manifold endowed
with a quarter symmetric linear connection D̃ is of the form

W̃ i
jkl = ∂kΓ̃i

jl − ∂lΓ̃i
jk + Γ̃m

jl Γ̃
i
mk − Γ̃m

jkΓ̃i
mk. (4.18)

By using (4.17) and (4.18) we have

W̃ i
jkl = ∂k

(
Γi
jl − qlφij

)
− ∂l

(
Γi
jk − qkφik

)
+

(
Γm
jl − qlφmj

) (
Γi
mk − qkφim

)
−
(
Γm
jk − qkφmj

) (
Γi
ml − qlφim

)
= W i

jkl − ∂k
(
qlφ

i
j

)
+ ∂l

(
qkφ

i
j

)
− qkΓm

jlφ
i
m − qlΓi

mkφ
m
j

+ qlqkφ
m
j φ

i
m + qlΓ

m
jkφ

i
m + qkΓi

mlφ
m
j − qkqlφmj φim (4.19)
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After some simplifications we obtain

W̃ i
jkl = W i

jkl + φij (∂lqk − ∂kql) + qk
(
∂lφ

i
j − Γm

jlφ
i
m + Γi

mlφ
m
j

)
− ql

(
∂kφ

i
j − Γm

jkφ
i
m + Γi

mkφ
m
j

)
. (4.20)

If we use the definition of prolonged covariant derivative for φij and ηk, then
we get

W̃ i
jkl = W i

jkl + φij

(
Ḋlqk − Ḋkql

)
+ qkḊlφ

i
j − qlḊkφ

i
j . (4.21)

Since Ḋlφ
i
j = 0, we find that

W̃ i
jkl = W i

jkl + φij

(
Ḋlqk − Ḋkql

)
. (4.22)

From (4.22), the covariant curvature tensor W̃ijkl is given by

W̃ijkl = Wijkl + 2φjiḊ[l
q
k]
, (4.23)

where Ḋ
[l
q
k]

is anti symmetric part of Ḋ
l
q
k
.

Contracting the tensor W̃ i
jkl with respect to i and l and using the fact that

ηiφ
i
j = 0, gives us

W̃jk = Wjk + φijḊiqk. (4.24)

Theorem 4.2. For an almost contact Weyl manifold with a quarter symmetric
linear connection, we have

s̃ = s, (4.25)

where s̃ and s are scalar curvature of the manifold with respect to the connections
D̃ and D, respectively.

Proof. Multiplying (4.24) by gjk and using the identity ξjφij = 0 gives

s̃ = s+ Ḋi

(
qkg

jkφij
)

= s+ Ḋi

(
fηkg

jkφij
)

= s+ Ḋi

(
fξjφij

)
= s.

Theorem 4.3. On an almost contact Weyl manifold with a quarter symmetric
linear connection, if the 1-form q is locally a gradient, then

W̃ i
jkl = W i

jkl,

W̃jk = Wjk.

Proof. The proof is immediate from (4.22).
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Proposition 4.4. On an almost contact Weyl manifold with a quarter sym-
metric connection, the following relations hold:

(i) W̃ijkl + W̃ijlk = 0

(ii) W̃ijkl + W̃jikl =
4

n
gijW[lk]

(iii) W̃ i
ikl = 2nD[lωk]

(iv) W̃klij + W̃kijl + W̃kjli = 2
(
φklḊ[i

q
j]

+ φkiḊ[j
q
l]

+ φkjḊ[l
q
i]

)
Proof. (i). Changing the indices k and l in (4.23) yields

W̃ijlk = Wijlk − 2φji∇̇[l
q
k]
. (4.26)

By adding (4.23) to (4.26) we obtain the result.
(ii). Similar to proof (i).
(iii). Contracting (4.22) with respect to i and j yields

W̃ i
ikl = W i

ikl + φii

(
Ḋlqk − Ḋkql

)
. (4.27)

Since φii = 0, we find that

W̃ i
ikl = W i

ikl = 2nD[lωk]. (4.28)

(iv). Using the 1st Bianchi Identity

Wklij +Wkijl +Wkjli = 0, (4.29)

and after the straightforward calculations, we get the result.
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1 Introduction

The notion of hyper-generalized quasi Einstein manifold has been first intro-
duced by A. A. Shaikh, C. Özgür and A. Patra, in 2011 [18]. An n-dimensional
Riemannian manifold (Mn, g), (n > 2) is called a hyper-generalized quasi Ein-
stein manifold if its Ricci tensor of type (0, 2) is non-zero and satisfies the
following condition [2]

S(X,Y ) =ag(X,Y ) + bA(X)A(Y ) + c[A(X)B(Y ) +A(Y )B(X)] (1.1)

+d[A(X)D(Y ) +A(Y )D(X)]

for all X,Y ∈ χ(M), where a, b, c and d are real valued, non-zero scalar
functions on (Mn, g), A, B and D are non-zero 1-forms such that

g(X, ρ1) = A(X), g(X, ρ2) = B(X), g(X, ρ3) = D(X), (1.2)

where ρ1, ρ2 and ρ3 are three unit vector fields mutually orthogonal to each
other at every point on M . The scalars a, b, c and d are called associated
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scalars of the manifold, A,B and D are called associated 1-forms and ρ1, ρ2 and
ρ3 are called the generators of the manifold. Throughout this work, such an
n-dimensional manifold will be denoted by (HGQE)n.

The name ”hyper” is used as in the case of hyper-real numbers. Especially, if
ρ2 and ρ3 are linearly dependent or if d = 0, then the notion of hyper-generalized
quasi Einstein manifold turns into the notion of generalized quasi Einstein man-
ifold introduced by M.C. Chaki in 2001, [2]. In [2, 6, 10], many authors studied
this kind of manifolds. Recently, in [11], the authors obtained some properties
of the generalized quasi Einstein manifolds satisfying some curvature conditions
on the conformal, concircular, projective and the quasi-conformal curvature ten-
sors. Furthermore, in [12], the authors investigated some geometric and physical
properties of the generalized quasi Einstein manifolds with applications in gen-
eral relativity. In addition to these studies, in [17] a non-trivial example of
(HGQE)2n+1 was given by Shaikh and Matsuyama which can be briefly sum-
marized as follows:

Example 1.1. Let M2n+1 be an almost contact metric manifold [1] admitting
an (1, 1) tensor field φ, a vector field ξ, a 1-form η and a Riemannian metric g
satisfying

φξ = 0, η ◦ φ = 0, φ2 = −I + η ⊗ ξ, (1.3)

g(φX, Y ) = −g(X,φY ), η(X) = g(X, ξ), η(ξ) = 1, (1.4)

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (1.5)

for all vector fields X,Y ∈ M2n+1 and such kind of manifold is denoted by
M2n+1(φ, ξ, η, g).

An almost contact metric manifold M2n+1(φ, ξ, η, g) is said to be a trans-
Sasakian manifold [13] if the following condition holds:

(∇Xφ)(Y ) = α[g(X,Y )ξ − η(Y )X] + β[g(φX, Y )ξ − η(Y )φX], (1.6)

where α, β are smooth functions on M and such a structure is called trans-
Sasakian structure of type (α, β). In [17], it was shown that in a conformally
flat trans-Sasakian manifold M2n+1(φ, ξ, η, g) of type (α, β), the Ricci tensor is
of the form:

S(X,Y ) =ag(X,Y ) + bη(X)η(Y ) + c[η(X)ω(Y ) + η(Y )ω(X)] (1.7)

+d[η(X)π(Y ) + η(Y )π(X)],

where a, b, c and d are non-zero scalars given by

a =
r

2n
−(α2−β2), b = − r

2n
+(2n+1)(α2−β2), c = 1, d = −(2n−1) (1.8)

and η, ω and π are non-zero 1-forms such that η(X) = g(X, ξ) so,

ω(X) = −((φX)α) = g(X,φ(gradα)), π(X) = (Xβ) = g(X, gradβ) (1.9)

for all X. Here, ξ is always orthogonal to gradβ and φ(gradα) so we may
only consider gradβ and φ(gradα) are orthogonal to each other. Then, such
a trans-Sasakian manifold is a (HGQE)2n+1, which is neither (QE)2n+1 nor
G(QE)2n+1, [17].
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Let {ei : i = 1, 2, · · · , n} be an orthonormal frame field at any point of the
manifold. Then, setting X = Y = ei in (1.1) and taking summation over i;
(1 ≤ i ≤ n), we obtain

r = an+ b, (1.10)

where r is the curvature of the manifold. In view of the equations (1.1) and
(1.2), in a hyper-generalized quasi Einstein manifold, we have

S(X, ρ1) = (a+ b)A(X) + cB(X) + dD(X), (1.11)

S(X, ρ2) = aB(X) + cA(X), S(X, ρ3) = aD(X) + dA(X), (1.12)

S(ρ1, ρ1) = (a+ b), S(ρ2, ρ2) = S(ρ3, ρ3) = a, S(ρ1, ρ2) = c, S(ρ1, ρ3) = d.
(1.13)

If d = c = 0 in the fundamental equation (1.1) of (HGQE)n, then the
manifold reduces to a quasi Einstein manifold. Quasi Einstein manifolds have
been studied by several authors, such as M.C. Chaki [3], U.C. De and G. C.
Ghosh [5] and S. Guha [10]. Also, in [14]; A.A. Shaikh, Y.H. Kim and S.K. Hui
and in [4]; A. De, C. Özgür and U.C. De studied on Lorentzian quasi Einstein
spacetimes.

Similarly, if d = c = b = 0 in (1.1), then the manifold reduces to an Einstein
manifold which is characterized by the proportionality of the Ricci tensor to the
metric tensor.

Let R denote the Riemannian curvature tensor of M . The k-nullity distri-
bution N(k) [19] of a Riemannian manifold M is defined by the set of all vector
fields Z ∈ Tp(M) satisfying the condition R(X,Y )Z = k[g(Y,Z)X− g(X,Z)Y ],
for all X,Y ∈ Tp(M) where k is some smooth function on M . In a quasi Einstein
manifold M , if the generator U belongs to some k-nullity distribution, then M
said to be an N(k)-quasi Einstein manifold [20]. C. Özgür and M. M. Tripathi
[15] proved that in an n-dimensional N(k)-quasi Einstein manifold, k = a+b

n−1 .
The importance of these manifolds is in fact due to the existence of certain

spacetimes endowed with semi-Riemannian metrics. In general relativity and
cosmology, the purpose of studying various types of semi-Riemannian manifolds
is to represent the different phases in the evolution of the universe. Quasi Ein-
stein spacetimes arose during the study of exact solutions of Einstein’s field
equations. For instance, the Robertson-Walker spacetimes are quasi Einstein
spacetimes. While (QE)4 can be taken as a model of perfect fluid spacetime,
the importance of G(QE)4 lies in the fact that such a 4-dimensional semi-
Riemannian manifold is related to the study of general relativistic fluid space-
time admitting heat flux [16, 5]. Thus, the investigations on these manifolds
with Riemannian or semi-Riemannian metric are very important in differential
geometry as well as in general relativity and cosmology.

In this direction, this paper is organized as follows: First, in Section 2 we
investigate geometric properties of (HGQE)n with respect to its generators.
Then, some pseudo-symmetry types of such manifolds are considered and some
necessary conditions for hyper-generalized quasi Einstein manifold to be a gen-
eralized quasi Einstein or a quasi Einstein manifold are obtained.
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2 Some Geometric Properties of
(HGQE)n

In this section, we investigate some geometric properties of (HGQE)n. First,
we consider a (HGQE)n whose generator ρ1 is a parallel vector field, that is

∇Xρ1 = 0, (2.1)

where ∇ is the Levi-Civita connection. Then for all X and Y clearly we have,
(∇XA)(Y ) = g(∇Xρ1, Y ) = 0 and so R(X,Y )ρ1 = 0. Contracting the last
equation we get, S(X, ρ1) = 0. Combining the last equation with (1.11), we
obtain

(a+ b)A(X) + cB(X) + dD(X) = 0. (2.2)

Putting X = ρ1 in (2.2), we get a + b = 0, putting X = ρ2 in (2.2), we get
c = 0 and putting X = ρ3 in (2.2), we get d = 0 which means that such a
manifold reduces to a quasi Einstein manifold and the sum of its associated
scalar functions is zero.

On the other hand, if we assume that the generator ρ2 is parallel vector field,
then similarly we have ∇Xρ2 = 0 and so S(X, ρ2) = 0. Thus, in view of (1.11),
we get

aB(X) + cA(X) = 0. (2.3)

Putting X = ρ2 in (2.3), we have a = 0 which is a contradiction. In a similar
manner, if we assume that the generator ρ3 is parallel vector field, then we have
∇Xρ3 = 0 and so S(X, ρ3) = 0 so, in view of (1.12), we get

aD(X) + dA(X) = 0. (2.4)

Putting X = ρ3 in (2.3), again we have a = 0. Hence we can state that:

Theorem 2.1. In a (HGQE)n, if the generator ρ1 is a parallel vector field,
then this manifold reduces to a quasi Einstein manifold in which the sum of its
associated scalar functions is zero. But, the generators ρ2 and ρ3 can not be
parallel vector fields.

From Theorem (2.1), the Ricci tensor of the (HGQE)n, whose generator ρ1
is a parallel vector field, can be expressed as follows:

S(X,Y ) = a[g(X,Y )−A(X)A(Y )]. (2.5)

Taking the covariant derivative of the Ricci tensor and using the fact that ρ1 is
a parallel vector field, we obtain

(∇ZS)(X,Y ) = Z(a)[g(X,Y )−A(X)A(Y )]. (2.6)

Contracting (2.6) over X and Z and using contracted second Bianchi Identity,
we get

1

2
Y (r) = Y (a)− ρ1(a)A(Y ). (2.7)
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Since r = (n− 1)a, from (2.7) we obtain

(
n− 3

2
)Y (a) = −ρ1(a)A(Y ). (2.8)

Putting Y = ρ1 in (2.8), we obtain ρ1(a) = 0. In this case, when n > 3, we get
Y (a) = 0, for all Y . That is, a is a constant. Then, from (2.6), we get ∇S = 0,
which leads us the following result:

Theorem 2.2. If the generator ρ1 of (HGQE)n, (n > 3) is a parallel vector
field, then the associated scalars of the manifold are constants and this manifold
is Ricci symmetric.

Moreover, since S(X,Y ) = g(QX,Y ), for all X,Y where Q is a Ricci oper-
ator, from (1.11)-(1.13) and as a 6= 0, we can easily state that:

Corollary 2.3. In a (HGQE)n, the following statements hold:

(1) Qρ1 is orthogonal to ρ1 if and only if a+ b = 0.

(2) Qρ2 is orthogonal to ρ1, then c = 0. That is, the manifold becomes a
generalized quasi Einstein manifold.

(3) Qρ3 is orthogonal to ρ1, then d = 0. That is, the manifold becomes a
generalized quasi Einstein manifold.

(4) Qρ2 can not be orthogonal to ρ2 and ρ3.

(5) Qρ2 is always orthogonal to ρ3.

3 Some Pseudo-symmetry Types of

(HGQE)n

Definition 3.1. [8] An n-dimensional Riemannian manifold (Mn, g) is called
Ricci-pseudosymmetric, if the tensor R ·S and the Tachibana tensor Q(g, S) are
linearly dependent, where for all X,Y, Z,W ∈ χ(M);

(R(X,Y ) · S)(Z,W ) = −S(R(X,Y )Z,W )− S(Z,R(X,Y )W ), (3.1)

Q(g, S)(Z,W ;X,Y ) = −S((X ∧g Y )Z,W )− S(Z, (X ∧g Y )W ) (3.2)

and
(X ∧g Y )Z = g(Y, Z)X − g(X,Z)Y. (3.3)

That is, the necessary and sufficient condition for (Mn, g) to be a Ricci-pseudo
symmetric manifold is that the following equation is satisfied

(R(X,Y ) · S)(Z,W ) = LSQ(g, S)(Z,W ;X,Y ) (3.4)

on the set US = {x ∈ M : S 6= r
ng at x} and LS is a certain function on US .

Then, by using (3.1)-(3.4), we can write

S(R(X,Y )Z,W )+S(Z,R(X,Y )W ) = LS [g(Y,Z)S(X,W ) (3.5)

−g(X,Z)S(Y,W ) + g(Y,W )S(Z,X)− g(X,W )S(Y, Z)].
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Now, we consider Ricci-pseudosymmetric (HGQE)n. Using the fundamental
equation (1.1) of (HGQE)n in (3.5) and in the resulting equation, putting
Z = ρ1, W = ρ2 and Z = ρ1, W = ρ3 respectively, we obtain the following
expressions:

bR(X,Y, ρ1, ρ2)+dR(X,Y, ρ3, ρ2) (3.6)

=LS

[
b[A(Y )B(X)−A(X)B(Y )]− dB(Y )D(X)

]
,

bR(X,Y, ρ1, ρ3)+cR(X,Y, ρ2, ρ3) = LS

[
b[A(Y )B(X)−A(X)B(Y )] (3.7)

+c[B(Y )D(X)−B(X)D(Y )]−D(X)D(Y )
]
.

Contracting (3.7) over X and Y and remembering that the generators ρ1, ρ2
and ρ3 are orthonormal, we obtain d = 0. Thus, the manifold under consid-
eration reduces to a G(QE)n. In [11], the authors proved that every Ricci-
pseudosymmetric G(QE)n is an N(k)-quasi Einstein manifold. Hence, we can
summarize above results by the following theorem:

Theorem 3.2. Every Ricci-pseudosymmetric (HGQE)n is an N(k)-quasi Ein-
stein manifold with LS = a+b

n−1 .

If the function LS in (3.4) vanishes, the Ricci-pseudosymmetric manifold
turns into a Ricci semi-symmetric manifold. Thus, the next result is obtained
directly:

Corollary 3.3. Every Ricci semi-symmetric (HGQE)n is a quasi Einstein
manifold whose Ricci tensor is of the form S(X,Y ) = a[g(X,Y )−A(X)A(Y )].

As a generalization of Ricci-pseudosymmetric manifolds, R.Deszcz intro-
duced the following notion:

Definition 3.4. [8] A semi-Riemannian manifold (Mn, g), (n ≥ 3) is said to
be Ricci-generalized pseudosymmetric if at every point of (Mn, g), R · R and
Q(S,R) are linearly dependent.

That is, the necessary and sufficient condition for (Mn, g) to be a Ricci-
generalized pseudosymmetric manifold is that the following equation is satisfied

R ·R = LRQ(S,R) (3.8)

at every point of the manifold, where LR is some function on M .

Very important subclasses of Ricci-generalized pseudosymmetric manifolds
form manifolds fulfilling the following condition

R ·R = Q(S,R). (3.9)

Such manifolds are said to be special Ricci-generalized pseudosymmetric man-
ifolds, [7].
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The condition (3.9) arises during the study of the Riemannian manifolds
satisfying the condition

ω(X)R(Y,Z) + ω(Y )R(Z,X) + ω(Z)R(X,Y ) = 0, (3.10)

where ω is a non-zero 1-form and X,Y, Z ∈ χ(M). R. Deszcz and W. Grycak
obtained the following characterization theorem for this kind of manifold:

Theorem 3.5. [9] (see Theorem 1) If at a point x ∈ M , the non-zero 1-form
ω satisfies the condition (3.10), then the relation (3.9) holds at x ∈M .

Motivated by the previous theorem, we will investigate the (HGQE)n sat-
isfying the condition ∑

X,Y,Z

ω(X)R(Y, Z) = 0, (3.11)

where
∑

denotes the cyclic sum over X,Y, Z. In this case, the following as-
sumptions can be examined:

Case 1: First, we choose the 1-form ω as the associated 1-form A of
(HGQE)n. Then, we have

A(X)R(Y,Z)W +A(Y )R(Z,X)W +A(Z)R(X,Y )W = 0. (3.12)

Contracting (3.12) over Z and W , we get

A(X)S(Y, Z) +R(ρ1, Y,X,Z)−A(Z)S(Y,X) = 0. (3.13)

Again, contracting (3.13) over X and Y , we obtain

2S(ρ1, Z)− rA(Z) = 0. (3.14)

By virtue of (1.11) and (1.10), (3.14) yields

[(2− n)a+ b]A(Z) + 2cB(Z) + 2dB(Z) = 0. (3.15)

Putting Z = ρ1 in (3.15), we get b = (n− 2)a, putting Z = ρ2 in (3.15), we get
c = 0 and putting Z = ρ3 in (3.15), we get d = 0 . Hence the Ricci tensor can
be expressed in the following form:

S(X,Y ) = a[g(X,Y ) + (n− 2)A(X)A(Y )]. (3.16)

Since n > 2, the manifold reduces to a (QE)n. Also, in view of (3.16), (3.13)
yields

R(X,Y )ρ1 = a[A(Y )X −A(X)Y ] (3.17)

which implies that the generator ρ1 belongs to a-nullity distribution. Hence,
such a manifold becomes an N(k)-quasi Einstein manifold with k = a+b

n−1 = a.
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Case 2-3: If we choose the 1-form ω as the associated 1-form B or D of
(HGQE)n, then from similar calculations with the Case 1, we get c = 0 and
b = a(2− n). Thus, the Ricci tensor can be expressed as

S(X,Y ) = ag(X,Y ) + a(2− n)A(X)A(Y ) + d[A(X)ω(Y ) +A(Y )ω(X)]
(3.18)

which means that the manifold reduces to a G(QE)n.
As a result of these examinations, we can state the following theorem:

Theorem 3.6. Let M be a (HGQE)n (n > 2) satisfying the condition∑
X,Y,Z

ω(X)R(Y, Z) = 0,

where ω is a certain 1-form and
∑

denotes the cyclic sum over X,Y, Z ∈ χ(M).
Then, the following conditions hold:

(1) If ω = A, then M reduces to an N(a)-quasi Einstein manifold, where a is
an associated scalar function of M .

(2) If ω = B or D, then M reduces to a G(QE)n.

Also, as a result of the last two theorems, the following corollary is obtained:

Corollary 3.7. Every (HGQE)n (n > 2) satisfying the condition∑
X,Y,Z

ω(X)R(Y,Z) = 0,

where ω is one of the associated 1-forms of the manifold, is a special Ricci-
generalized pseudosymmetric manifold.

Analogously, we can examine the (HGQE)n satisfying the condition∑
X,Y,Z

ω(X)C(Y, Z) = 0, (3.19)

where ω is a non-zero 1-form,
∑

denotes the cyclic sum over X,Y, Z and C
denotes the conformal curvature tensor defined by

C(X,Y )Z =R(X,Y )Z − 1

n− 2
[S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

(3.20)

+
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ],

where Q is Ricci operator, r is scalar curvature tensor. Similarly, the following
cases can be investigated:
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Case 1: We can choose the 1-form ω as the associated 1-form A of the
(HGQE)n. Then, we have

A(X)C(Y, Z)W +A(Y )C(Z,X)W +A(Z)C(X,Y )W = 0. (3.21)

Then, contracting (3.21), first we obtain C(X,Y )Z = 0 for all X,Y, Z. That is,
the manifold is conformally flat. Thus from (3.20), we get

R(X,Y )Z =
1

n− 2
[S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ] (3.22)

− r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ].

Putting Z = ρ1 in (3.22), we get

R(X,Y )ρ1 =
a+ b

n− 1
[A(Y )X −A(X)Y ]− d

n− 2
[D(Y )X −D(X)Y ] (3.23)

and contracting (3.23) over X, we get

S(X, ρ1) = (a+ b)A(X) +
d(n− 1)

n− 2
D(X). (3.24)

Comparing the equations (1.11) and (3.24) and putting X = ρ2 and X = ρ3 in
the resulting equation, we get c = 0 and d = 0, respectively. Similarly, putting
Z = ρ2 in (3.22), we get

R(X,Y )ρ2 =
( 2a

n− 2
− r

(n− 1)(n− 2)

)
[B(Y )X −B(X)Y ] (3.25)

+
c− d
n− 2

[A(Y )X −A(X)Y ]

and contracting (3.25) over X, we get

S(X, ρ2) =
2a(n− 1)− r

(n− 2)
B(X) +

(c− d)(n− 1)

n− 2
A(X). (3.26)

Comparing the equations (1.12) and (3.26) and putting X = ρ2 in the resulting
equation, we also have b = 0. In summary, we have b = c = d = 0. This implies
that the manifold under consideration reduces to an Einstein manifold, which
is a contradiction.

Case 2-3: If we choose the 1-form ω as the associated 1-form B or D of the
(HGQE)n, then by direct calculations, we obtain a contradiction similar with
the Case 1. Hence, we obtain the following result:

Theorem 3.8. There does not exist any (HGQE)n satisfying the condition∑
X,Y,Z

ω(X)C(Y, Z) = 0,

where ω is one of the associated 1-forms of the manifold,
∑

denotes the cyclic
sum over X,Y, Z and C denotes the conformal curvature tensor.
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[11] Güler, S., Altay Demirbağ, S., On some classes of generalized quasi Ein-
stein manifolds. Filomat 29, no 3 (2015), 443–456.
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