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1 INTRODUCTION

The Gauss map G of a submanifold M into G(n,m) in A"E”, where G(n,m)
is the Grassmannian manifold consisting of all oriented n—planes through the
origin of E7* and A"EY" is the vector space obtained by the exterior product
of n vectors in E7* is a smooth map which carries a point p in M into the
oriented n—plane in EI" obtained from parallel translation of the tangent space
of M at p in E7". Since the vector space A"EY* identify with a semi-Euclidean
space EY for some positive integer ¢, where N = ZL , the Gauss map is
defined by G : M — G(n,m) C EN, G(p) = (e1 A... Aen) (p). The notion
of submanifolds with finite type Gauss map was introduced by B. Y.Chen and
P.Piccinni in 1987 [6] and after then many works were done about this topic,
especially 1-type Gauss map and 2- type Gauss map.

If a submanifold M of a Euclidean space or pseudo-Euclidean space has
1-type Gauss map G, then G satisfies

AG = \(G+C)
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for some A € R and some constant vector C.
On the other hand the Laplacian of the Gauss map of some typical well-
known surfaces satisfies the form

AG = f(G+0C) (1.1)

for some smooth function f on M and some constant vector C. A submanifold
of a Euclidean space or pseudo-Euclidean space is said to have pointwise 1-type
Gauss map, if its Gauss map satisfies (1.1) for some smooth function f on M
and some constant vector C. If the vector C' in (1.1) is zero, a submanifold with
pointwise 1-type Gauss map is said to be of the first kind, otherwise it is said
to be of the second kind.

A lot of papers were recently published about rotational surfaces with point-
wise 1-type Gauss map in four dimensional Euclidean and pseudo Euclidean
space in [1],[3],[4], [8], [9] [11]. Timelike and spacelike rotational surfaces of el-
liptic, hyperbolic and parabolic types in Minkowski space E} with pointwise
1-type Gauss map were studied in [5, 7]. Aksoyak and Yayh in [2] studied boost
invariant surfaces (rotational surfaces of hyperbolic type) with pointwise 1-type
Gauss map in Minkowski space E}. They gave a characterization for flat boost
invariant surfaces with pointwise 1-type Gauss map. Also they obtain some
results for boost invariant marginally trapped surfaces with pointwise 1-type
Gauss map. Ganchev and Milousheva in [10] defined three types of rotational
surfaces with two dimensional axis rotational surfaces of elliptic, hyperbolic
and parabolic type in pseudo Euclidean space Ej. They classify all rotational
marginally trapped surfaces of elliptic, hyperbolic and parabolic type, respec-
tively.

In this paper, we study rotational surfaces of elliptic, hyperbolic and parabolic
type with pointwise 1-type Gauss map which have spacelike profile curve in four
dimensional pseudo Euclidean space and give all classifications of flat rotational
surfaces of elliptic, hyperbolic and parabolic type with pointwise 1-type Gauss
map.

2 PRELIMINARIES

Let E7* be the m—dimensional pseudo-Euclidean space with signature (s, m—s).
Then the metric tensor g in E7* has the form

m—s m
2 2
=1 1=m—s+1
where (z1,...,%n) is a standard rectangular coordinate system in E7".

A vector v is called spacelike (resp., timelike) if (v, v) > 0 (resp., (v,v) < 0).
Avector v is called lightlike if it v # 0 and (v,v) = 0, where (,) is indefinite
inner scalar product with respect to g.
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Let M be an n—dimensional pseudo-Riemannian submanifold of a m—dimen-
sional pseudo-Euclidean space E7* and denote by V and V Levi-Civita con-
nections of EI* and M , respectively. We choose local orthonormal frame
{e1,-.-,€n, €nti,.-- em}on M with e4 = (ea,ea) = £1 such that eq,...e,
are tangent to M and e, 11, ..., e, are normal to M. We use the following con-
vention on the ranges of indices: 1 < ¢,j,k,... < n,n+1 < rs,t,... < m,
1<AB,C,...<m.

Denote by w4 the dual-1 form of e4 such that wy (X) = (e4, X) and wap
the connection forms defined by

desy = E €pwapep, wap+wpa =0.
B

Then the formulas of Gauss and Weingarten are given by

n m
v r
Ve, €i = E gjwij (er)ej + g erhipe,
i=1

r=n+1

and

n m

v § s E

vekes = - €5 kjej + Dekesa Dekes = ErWsr (ek) €r,
=1

r=n+1

where D is the normal connection, h], the coeflicients of the second fundamental
form h.

For any real function f on M, the Laplacian operator of M with respect to
induced metric is given by

Af=-eY (%ﬁeif - @ve,ieif) . (2.1)
The mean curvature vector H and the Gaussian curvature Kof M in EJ' are
defined by
1 m n
H = — ; S .
- Z Zgzssh“es (2.2)
s=n+1i=1
and .
K = Z es (hi1h3s — hizh3y) ., (2.3)
s=n+1

respectively. We recall that a surface M is called minimal if its mean curvature
vector vanishes identically, i.e. H = 0. If the mean curvature vector satisfies
DH = 0, then the surface M is said to have parallel mean curvature vector.
Also if Gaussian curvature of M vanishes identically, i.e. K =0, the surface M
is called flat.
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3 ROTATIONAL SURFACES WITH POINTWISE
1-TYPE GAuss MaP IN Ej

In this section, we consider rotational surfaces of elliptic, hyperbolic and parabolic
type in four dimensional pseudo-Euclidean space E3 which are defined by Ganchev
and Milousheva in [10] and investigate these rotational surfaces with pointwise
1-type Gauss map.

We denote the standart orthonormal basis of E3 by {e1, €2, €3, €4} where ¢; =
(1,0,0,0), e2 = (0,1,0,0), e3 = (0,0,1,0) and ¢4 = (0,0,0,1), and (e1,€1) =
<62,€2> = 1, <63,63> = <64,64> =—1.

3.1 Rotational surfaces of elliptic type with pointwise
1-type Gauss map in E;

In this subsection, first we consider the rotational surfaces of elliptic type with
harmonic Gauss map.Then, we give a characterization of the flat rotational
surfaces of elliptic type with pointwise 1-type Gauss map and obtain a relation-
ship for non-minimal these surfaces with parallel mean curvature vector and
pointwise 1-type Gauss map of the first kind.

Rotational surface of elliptic type M; is defined by

10 0 0 z1(s)
101 o0 0 z2(s)
Pt s) = 0 0 cost —sint z3(5)
0 O sint cost 0
M : o (t,s) = (x1(s),z2(s),x3(s) cost, x3(s) sint), (3.1)

where the surface M; is obtained by the rotation of the curve

ZL’(S) = ($1(8),$2(8),$3(3), O)

about the two dimensional Euclidean plane span{e;, €2} . Let the profile curve of
M; be unit speed spacelike curve. In that case, (z1/(s))°+ (z2'(s))* — (z5/(s))* =
1. We suppose that z3(s) > 0. The moving frame field {e1, e, e3,e4} on M is
determined as follows:

er = (2)(s),x5(s), x5(s) cost, x5(s)sint),
eas = (0,0,—sint,cost),
1 / /
es = —————(—T5(s),x7(s),0,0),
' g (e a4 (9),00)
1 / / !/ ! ! 2
eg = —————(a5(s)x](s), 25(s)z5(s), (1 + x5(s)?) cost,
4 1+x§)(s)2(3()1() 3(s)25(s), ( 3(5)%)

(1 +xg(s)2)smt),
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where eq, eo and es, e4 are tangent vector fields and normal vector fields to My,

respectively.Then it is easily seen that
(e1,€1) = (e3,e3) =1, (e2,e2) = (ea,€4) = —1.
We have the dual 1-forms as:

wp=ds and  we = —x3(s)dt.

After some computations, the components of the second fundamental form and

the connection forms are given as follows:
h% =—d(s), h?z =0, th =0,
hiy = —c(s), iy =0, hiy=0b(s)
and
w12 =a(8)b(s)wa, w1z = —d(s)w1, wig = —c(8)w1,
woz =0, way = —b(s)wa, wszs = a(s)d(s)ws.

By taking the covariant derivative with respect to e; and eo we have

61 = —d(s)es+ c(s)eq,
€1 = a(s)b(s)es,
e1€2 = 0

a(s)b(s)e; — b(s)eq,
(

< < \<]z <t m<]z < < <
o
|

ces = d(s)er —a(s)d(s)ey,
€3 = 0,
€164 c(s)er — a(s)d(s)es,
exa = Db(s)ez,
where
a(s) = x5(8) ’
1+ (x3")
1+ (z3')°
b(s) = O
:E//(S)
C(S) — 3 ’
14 (x3/)2
de) = lrale) - ai)ais),
1+ (z3/)

(3.2)

(3.7)

By using (2.2), (2.3) and (3.2), the mean curvature vector and Gaussian curva-

ture of the surface M; are obtained as:
1

H = 5 (—d(s)es + (c(5) +b(s) ea)

100

(3.8)



and
K =c¢(s)b(s), (3.9)

respectively.
By using (2.1) and (3.3), we find the Laplacian of the Gauss map of M as :

AG = L(s) (e1 Nea) + M(s) (e2 Aes) + N(s) (ex Aeq), (3.10)
where
L(s) = d*(s) — b (s) — c*(s), (3.11)
M(s) =d' (s) + a(s)d(s)(b(s) + c(s)), (3.12)
N(s) =V (s) +(s) +a(s)d*(s). (3.13)

Theorem 3.1. Let M be rotation surface of elliptic type given by the parametriza-
tion (3.1). If My has harmonic Gauss map then it has constant Gaussian cur-
vature.

Proof. Let the Gauss map of M; be harmonic, i.e., AG = 0. So, from (3.10),
(3.11), (3.12) and (3.13) we have

d*(s) —b*(s) —c*(s) = 0, (3.14)
d' (s) + a(s)d(s)(b(s) + c(s)) 0,
V()4 (s) +a(s)d*(s) = 0.

By multiplying both sides of the second equation of (3.14) with d(s) and using
the third equation of (3.14) we have

d(s)d’ (s) — b(s)V' (s) — c(s)c (s) = (b(s)c(s))’. (3.15)

By differeniating the first equation of (3.14) with respect to s and us-
ing (3.15), we have that b(s)c(s) =constant.Hence, from (3.9) we get K =
Ky =constant. U

Theorem 3.2. Let My be the flat rotational surface of elliptic type given by the
parametrization (3.1). Then M; has a pointwise 1-type Gauss map if and only
if the profile curve of My is characterized by one of the following way:

i

1
r1(8) = — 5 sin (=615 + &) + 04,
1
1
wa(s) =5 cos (=015 + 62) + b, (3.16)
1
z3(s) =0,

where 61, 02, 03 and &4 are real constants and the Gauss map of M satisfies
(1.1) for f = 6% — 5% and C = 0. If 6163 = £1 then the function f becomes zero
3

and it implies that the Gauss map is harmonic.
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i)
o) = [ (143

[ME

cos <—/\3 In(Ars + A2) + /\4> ds,
A (14 )\%)

Nl

9 i Ag (317)
x2(8) :/ (1+)\1)2 sin | —————————In(A\s+ X2) + A\g | ds,
A1 (14 A2)

N

1'3(8) =15+ Ao,

where A1, Ao, A3 and Ay are real constants and the Gauss map of My satisfies
2 1
(1.1) for f(s) = m (1_?‘_—35\% - 1) and C = Mer Aea+ A1 (14 A1) 2 ea Aey.

Proof. We suppose that M; has pointwise 1-type Gauss map. By using (1.1)
and (3.10), we get

—f+f{Cie1 Nes) = —L(s), (3.18)
f{Ciea Nes) = —M(s),
f{Ciea Nes) = N(s)
and
<C,61 N 63> = <C, €1 A €4> = <C, €3 A 64> =0. (319)

By taking the derivatives of all equations in (3.19) with respect to e3 and using
(3.18) we obtain

a(s)N(s) — L(s)+f = 0, (3.20)
a(s)M(s) = 0,
M(s) = 0,

respectively. From above equations, we have two cases. One of them is a(s) = 0,
M (s) = 0 and the other is a(s) # 0, M (s) = 0. Firstly, we suppose that a(s) =0
and M(s) = 0. By using (3.4), we have that z3(s) = d3=constant. It implies
that ¢(s) =0, b(s) = é and M is flat. Since the profile curve x is spacelike
curve which is parameterized by arc-length, we can put

z(s) = cosd(s) (or resp. sind(s)),
xh(s) = sind(s) (or resp. cosd(s)), (3.21)

where § is smooth angle function. Without loss of generality we assume that
77 (s) = cosd (s) and z5(s) = sind (s)

We can do similar computations for the another case, too. By using third
equation of (3.20) and (3.12) we obtain that

d(s) = 61, 01 is non zero constant. (3.22)
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On the other hand by using (3.7), (3.21) and (3.22) we get
0 (s) = —d15+ da, (3.23)

where 01, 02 are real constants. Then by substituting (3.23) into (3.21) and
taking the integral we have the equation (3.16). Also the Laplacian of the Gauss
map of M; with the equations a(s) = 0, b(s) = é, c(s) =0and d(s) = is

found as AG = ((5% — 5%) G
3
Now we suppose that a(s) # 0 and M (s) = 0. Since the surface M; is flat,
i.e., K =0. By using (3.9) we have that ¢(s) = 0. From (3.6) we get

x3(s) = A1s 4+ Ag (3.24)
for some constants A1 # 0 and As. In that case by using (3.4), (3.5) and (3.24)

we have

A1

a(s) = ——— (3.25)
(14 M%)
and )
2\ 2

b(s) = m (3.26)

Let consider that M (s) = 0 with ¢(s) = 0. In that case from (3.12), we obtain
that

d' (s) + a(s)b(s)d(s) =0 (3.27)
By using (3.25), (3.26) and (3.27) we have
d(s) = ﬁ;j o (3.28)

where A3 is constant of integration. On the other hand, Since the profile curve
x is spacelike curve which is parameterized by arc-length, we can put

zi(s) = (1+A])2cosA(s), (3.29)
1
zh(s) = (1+A])%sinA(s),
where )\ is smooth angle function. By differentiating (3.29). we obtain

F(s) = —(1+A2)%simA(s) N (s), (3.30)

24(s) = (14+A7)%cosA(s) N (s).
By using (3.7), (3.24), (3.29) and (3.30), we get

d(s) = — (14+A2) X (s). (3.31)
By combining (3.28) and (3.31) we obtain
A3

A (S) = 111()\18 + )\2) + A4 (332)
A1 (14 A2)

N
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So by substituting (3.32) into (3.29), we get

x1(s) = / (1+ /\%)% cos (—)\31 In(A1s+ Aa) + )\4> ds,
A (1+A2)2

zo(s) = / (1 + )\%)% sin (—/\31 In(Ars + Ag) + /\4> ds,
A (1+23)2

Conversely, the surface M; whose the profil curve given by (3.17) is pointwise
1-type Gauss map for

_ 1 A3 3
fle) = (A1s + Ag)? (HA% 1)

and )
C=Xe Nea+ N\ (1 +)\%)§ es A ey.

O

Theorem 3.3. A non- minimal rotational surfaces of elliptic type M, defined
by (3.1) has pointwise 1-type Gauss map of the first kind if and only if the mean
curvature vector of My is parallel .

Proof. From (3.8) we have that H = % (—d(s)es + (c(s) +b(s))es). Let the
mean curvature vector of M; be parallel, i.e., DH = 0. Then we get

Do H = % (= M(s)es + N(s)ea) = 0.

In this case we obtain that M(s) = N(s) = 0. From (3.10), we have that
AG = L(s)ey A es.

Conversely, if M; has pointwise 1-type Gauss map of the first kind then
from (3.10) we get M(s) = N(s) = 0 and it implies that M; has parallel mean
curvature vector. O

Corollary 3.4. If rotational surfaces of elliptic type My given by (3.1) is min-
imal then it has pointwise 1-type Gauss map of the first kind.

3.2 Rotational surfaces of hyperbolic type with pointwise
1-type Gauss map in Ej}

In this subsection, first we consider rotational surfaces of hyperbolic type with
harmonic Gauss map. Moreover, we obtain a characterization of flat rotational
surfaces of hyperbolic type with pointwise 1-type Gauss map and give a rela-
tionship for non-minimal these surfaces with parallel mean curvature vector and
pointwise 1-type Gauss map of the first kind. The proofs of theorems in this
subsection are similar the proofs of theorems in previous section so we give the
theorems as without proof.
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Rotational surface of hyperbolic type M> is defined by

cosht 0 sinht 0 x1(8)

_ 0 1 0 0 x2($)

Pt s) = sinht 0 cosht 0 0
0 0 0 1 x4(5)

My : ¢ (t,s) = (x1(s) cosht,za(s),x1(s) sinht, z4(s)), (3.33)

where the surface Ms is obtained by the rotation of the curve

2(s) = (1(s), 22(s), 0, 24(s))

about the two dimensional Euclidean plane spanned by s and €4. Let the profile

curve of My be unit speed spacelike curve. In that case (z1(s))” + (x2'(s))* —

(24'(s))> = 1. We assume that 21 (s) > 0. The moving frame field {e1, e2, es, €4}
on My is choosen as follows:

€1 = (x/l(s) cosht, x;(s)vxll(s) sinht, xil(s)) )

ea = (sinht,0,cosht,0),

]' / /
es NaCAOEES)] (0,2%(s), 0, 5(s)) ,
eq = 1 ( (z4(s)> = 1) cosht, =/ (s)25(s), (#}(s)* — 1) sinht,

e(zi(s)? — 1)

~af ()24 (5)),

where e1,e; and es, ey are tangent vector fields and normal vector fields to
My, respectively and ¢ is signature of (z1')* — 1. If (z,/)* — 1 is positive (resp.
negative) then € = 1 (resp. € = —1). It is easily seen that

(e1,€1) = — (e2,e2) =1, (e3,e3) = —(eq,e4) = €.
we have the dual 1-forms as:
w1 =ds and wy = —x1(s)dt.

After some computations, components of the second fundamental form and the
connection forms are obtained by:

h?l :d(8)7 hzls2 =0, th =0,

3.34
h£111 =c(s), h%z =0, h%z = —¢b(s) ( )

and

w12 =a(s)b(s)wa, w1z =d(s)w1, w14 = c(s)wr,

woz =0, woyq = eb(s)wa, w4 = a(s)d(s)wr.
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Differentiating covariantly with respect to e; and e; we get

€1 = ed(s)es —ec(s)ey (3.35)

€1 = a(s)b(s)ez

®
o
D
N
|
S

a(s)b(s)er + b(s)ey

< < < \<1 mqr < < <
e
I

ee3 = —d(s)er —ea(s)d(s)es
ez€3 = 0
s = —c(s)er —ea(s)d(s)es
s = —eb(s)es
where ,
a(s) = zy(s) 7

d(s) = TBE)Ta(6) — Ti()(s)

e ((xl )2 1)

By using (2.2), (2.3) and (3.34), the mean curvature vector and Gaussian cur-
vature of the surface My are obtained as follows:

H= % (ed(s)es —e(c(s) +eb(s))eq)
and
K =¢(s)b(s),

respectively.
By using (2.1) and (3.35) , we find the Laplacian of the Gauss map of M,
as:
AG = L(s) (e1 ANea) + M(s) (ea Aez) + N(s) (e2 Aesq),

where

L(s) = (d*(s) — ¢* (s) = b (5)),
M( ) e (d'(s) +ea(s)d(s) (c(s) +b(s)))
—e ((s) + et/ (s) +ea(s)d?(s)) .
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Theorem 3.5. Let My be rotation surface of hyperbolic type given by the pa-
rameterization (3.33). If My has Gauss map harmonic then it has constant
Gaussian curvatrure.

Theorem 3.6. Let My be flat rotation surface of hyperbolic type given by the
parameterization (3.33). Then My has pointwise 1-type Gauss map if and only
if the profile curve of Mo is characterized in one of the following way:

i)

171(5) = 51,
1

xa(s) = =5 sinh (—dg9s + d3) + d4,
1

x4(s) = =5 cosh (—das + 03) + 44,

where 61, 02, 03 and 64 are real constants and the Gauss map G satisfies
(1.1) for f = 5% —62 and C = 0. If 6,62 = 1 then the function f becomes zero
and it implies that the Gauss map is harmonic.
z1(s) = Ms+ A,

/ ()\f — 1)% sinh Ll In(A1s+ Aa) + Ag | ds,
A (A2 —1)2

x2($)

x4(s) = /(Af - 1)% cosh Llln()\ls—k)\g) + A4 | ds,
AL (A2 —1)2

where A1, A2, Az and \g are real constants and without loss of generality we
suppose that A2 —1 > 0. Morever the Gauss map G satisfies (1.1) for the function
1

2 L
f(s) = (/\lsih)g (1 — A%\il) and C = —X2ej Neg + A\ ()\% — 1)2 es N ey.

Theorem 3.7. A non- minimal rotational surfaces of hyperbolic type Mo defined
by (3.33) has pointwise 1-type Gauss map of the first kind if and only if My has
parallel mean curvature vector

Corollary 3.8. If rotational surfaces of hyperbolic type My given by (3.33) is
manimal then it has pointwise 1-type Gauss map of the first kind.

3.3 Rotational surfaces of parabolic type with pointwise
1-type Gauss map in Ej

In this subsection, we study rotational surfaces of parabolic type with pointwise
1-type Gauss map. We show that flat rotational surface of parabolic type has
pointwise 1-type Gauss map if and only if its Gauss map is harmonic. Also we
conclude that flat rotational surface of parabolic type has harmonic Gauss map
if and only if it has parallel mean curvature vector.
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We consider the pseudo-orthonormal base {e1, &2, &3, €4} of E% such that & =

62\;%63; §3 = _6\2/—553 (&2,&2) = (&3,&) = 0 and (&, &3) = —1. Let consider «
spacelike curve is given by

x(8) = x1(s)er + xa(s)ea + x3(s)es

or we can express x according to pseudo-orthonormal base {e1,&2,&3,€4} as
follows:
(s) = z1(s)er + p(s)&2 + q(s)&s,

@2(s)+x3(s)
2

where p(s) = and ¢(s) . The rotational surface of

parabolic type M3 is defined by

— —za(s)tws(s)
V2

Ms: ¢ (t,s) = 1(s)er + p(8)& + (—t°p(s) + q(s))&s + V2p(s)es,  (3.36)

We suppose that z is parameterized by arc-length, that is, (z1/(s))>=2p/(s)¢(s) =
1. Now we can give a moving orthonormal frame {eq, es, e3, e4} for M3 as follows:

er = m1/(s)er + /()& + (—t7D'(5) + ¢'(5))&s + V2t (5)es,

e2 = —V2& + e,

e3 = €+ xpl,((:;) &3,

ea = m/(s)e +p'(s)sa + (o= + d'(s) — 7D/ (5))&s + V2tp' (s)ea,

P'(s)
where p/(s) is non zero. Then it is easily seen that
(e1,e1) = (es,e3) =1, (ea,ea) = (eq,e4) = —1.
We have the dual 1-forms as:
wi=ds and wy = —\/ip(s) dt.

Also we obtain components of the second fundamental form and the connection
forms as:

hilil =c(s), h?z =0, hgz =0,

3.37
h%1 =—b(s), hé112 =0, h§2 = a(s) ( )
and
wiz =a(s)wa, wiz =c(s)wr, wig = —b(s)wr,
woz =0, woy = —a(s)we, wss = —c(s)ws.

Then, by taking the covariant derivatives with respect to e; and eq, weget as
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follows:

Veer = cs)es + b(s)ey, (3.38)
Ve,e1 = a(s)es,
66162 = 0,
?5262 = a(s)e; — a(s)ey,
Ve, es = —c(s)er + c(s)eq,
66263 = 07
Vees = b(s)er + c(s)es,
Ve,ea = a(s)es,
where o)
_ P\
a(s) = Ok (3.39)
&) — p//(S)
b(s) 7(s) (3.40)
() ()2 )
(s e (3.41)

By using (2.2), (2.3) and (3.37), the mean curvature vector and Gaussian cur-
vature of the surface M3 are obtained as follows:

H = - (c(s)es + (a(s) +b(s)) es) (3.42)

1
2
and

K =a(s)b(s), (3.43)

respectively.
By using (2.1) and (3.38), we find the Laplacian of the Gauss map of M3 by

AG = L(s)(e1 Nea) + M(s) (e2 Aes) + N(s) (ex Aeq), (3.44)
where
L(s) = *(s) — a® (s) — b*(s), (3.45)
M(s) = ¢ (s) + c(s)(a(s) + b(s)), (3.46)
N(s) =c*(s) +ad (s)+V (s). (3.47)

Theorem 3.9. Let M3 be flat rotation surface of parabolic type given by the
parameterization (3.36). Then Ms has pointwise 1-type Gauss map if and only
if the profile curve of Ms is given by

ri(s) = i(ln(u18+u2)(ms+u2))+(u4—6)8+u5,
p(S) = /L15+,LL2,
qa(s) = i/((eln(uls+uz)+u4>2—1> ds,
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where py, po, pa, ps real constants. Morever the surface Ms has harmonic
Gauss map for f = 0.

Proof. We suppose that M3 has pointwise 1-type Gauss map. In that case the
Gauss map of Mj satisfies (1.1). By using (1.1) and (3.44), we get

—f+f{CeiNes)y = —L(s), (3.48)
f{Cieanes) = —M(s),
f{Cieanes) = N(s)
and
(Cre1 Neg) = (Creqr Neq) = (Crez Ney) = 0. (3.49)

By taking the derivatives of all equations in (3.49) with respect to e3 and using
(3.48) we obtain

L(s)—N(s) = f. (3.50)

respectively. Since the surface Mj is flat, i.e., K = 0 from (3.43) we have that
b(s) = 0. From (3.40) we obtain that

p(s) = pas + p2 (3.51)
for some constants p1 # 0 and ps. By using (3.39) and (3.51) we have that

H1

a(s) = ————. 3.52

(=) H18 + 2 (3.52)

If we consider M(s) = 0 with the equations b(s) = 0 and a(s) = #1;&#2’ from

(3.46) we get

H3

c(s) = ————. 3.53

()=t (3.59

On the other hand, by using the first equation of (3.50), (3.45), (3.47), (3.52)
and (3.53) we obtain that f = 0. It means that L(s) = N(s) = 0 and we have

M3 = €1, € = 1.
If we consider (3.41), (3.51) and (3.53) we get
5
z1(s) = o (In(prs + p2)(pas + p2)) + (pa —€) s + s, (3.54)

where p4, ps are constants of integration. Since x is unit speed spacelike curve
we get
(21/(5)* — 1

"(s) = 3.55
/(o) = S50 (355)
By substituting (3.51) and (3.54) into (3.55) we obtain
—_ 2 —
q(s) = o / ((5 In (p1s + p2) + pa) 1) ds.
This completes the proof. O
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Theorem 3.10. Let M3 be flat rotational surfaces of parabolic type given by
(8.36). M3 has harmonic Gauss map if and only if its mean curvature vector is
parallel.

Proof. We suppose that M3 has parallel mean curvature vector, i.e., DH = 0.
From (3.42) we have that

l%H:;M@%+N@m20

In this case we obtain that M(s) = N(s) = 0. Since M3 is a flat surface, from
the previous theorem we have

%31
b(s) =0 and a(s) = ———.
(5 ()=
By considering the equation M (s) = 0 with above equations and using (3.46)
we get
M3
c(s) = ————
(s) .
where ps is the constant of integration. It implies that L(s) = 0. Hence we
obtain that Gauss map of M3 is harmonic .
Conversely, if M3 is harmonic then it is easily seen that DH = 0. O
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