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1 Introduction

The Gauss map G of a submanifold M into G(n,m) in ∧nEms , where G(n,m)
is the Grassmannian manifold consisting of all oriented n−planes through the
origin of Ems and ∧nEms is the vector space obtained by the exterior product
of n vectors in Ems is a smooth map which carries a point p in M into the
oriented n−plane in Ems obtained from parallel translation of the tangent space
of M at p in Ems . Since the vector space ∧nEms identify with a semi-Euclidean

space ENt for some positive integer t, where N =

(
m
n

)
, the Gauss map is

defined by G : M → G(n,m) ⊂ ENt , G(p) = (e1 ∧ ... ∧ en) (p). The notion
of submanifolds with finite type Gauss map was introduced by B. Y.Chen and
P.Piccinni in 1987 [6] and after then many works were done about this topic,
especially 1-type Gauss map and 2- type Gauss map.

If a submanifold M of a Euclidean space or pseudo-Euclidean space has
1-type Gauss map G, then G satisfies

∆G = λ (G+ C)
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for some λ ∈ R and some constant vector C.
On the other hand the Laplacian of the Gauss map of some typical well-

known surfaces satisfies the form

∆G = f (G+ C) (1.1)

for some smooth function f on M and some constant vector C. A submanifold
of a Euclidean space or pseudo-Euclidean space is said to have pointwise 1-type
Gauss map, if its Gauss map satisfies (1.1) for some smooth function f on M
and some constant vector C. If the vector C in (1.1) is zero, a submanifold with
pointwise 1-type Gauss map is said to be of the first kind, otherwise it is said
to be of the second kind.

A lot of papers were recently published about rotational surfaces with point-
wise 1-type Gauss map in four dimensional Euclidean and pseudo Euclidean
space in [1],[3],[4], [8], [9] [11].Timelike and spacelike rotational surfaces of el-
liptic, hyperbolic and parabolic types in Minkowski space E4

1 with pointwise
1-type Gauss map were studied in [5, 7]. Aksoyak and Yaylı in [2] studied boost
invariant surfaces (rotational surfaces of hyperbolic type) with pointwise 1-type
Gauss map in Minkowski space E4

1. They gave a characterization for flat boost
invariant surfaces with pointwise 1-type Gauss map. Also they obtain some
results for boost invariant marginally trapped surfaces with pointwise 1-type
Gauss map. Ganchev and Milousheva in [10] defined three types of rotational
surfaces with two dimensional axis rotational surfaces of elliptic, hyperbolic
and parabolic type in pseudo Euclidean space E4

2. They classify all rotational
marginally trapped surfaces of elliptic, hyperbolic and parabolic type, respec-
tively.

In this paper, we study rotational surfaces of elliptic, hyperbolic and parabolic
type with pointwise 1-type Gauss map which have spacelike profile curve in four
dimensional pseudo Euclidean space and give all classifications of flat rotational
surfaces of elliptic, hyperbolic and parabolic type with pointwise 1-type Gauss
map.

2 Preliminaries

Let Ems be the m−dimensional pseudo-Euclidean space with signature (s,m−s).
Then the metric tensor g in Ems has the form

g =

m−s∑
i=1

(dxi)
2 −

m∑
i=m−s+1

(dxi)
2

where (x1, . . . , xm) is a standard rectangular coordinate system in Ems .
A vector v is called spacelike (resp., timelike) if 〈v, v〉 > 0 (resp., 〈v, v〉 < 0).

Avector v is called lightlike if it v 6= 0 and 〈v, v〉 = 0, where 〈, 〉 is indefinite
inner scalar product with respect to g.
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LetM be an n−dimensional pseudo-Riemannian submanifold of am−dimen-
sional pseudo-Euclidean space Ems and denote by ∇̃ and ∇ Levi-Civita con-
nections of Ems and M , respectively. We choose local orthonormal frame
{e1, . . . , en, en+1, . . . , em} on M with εA = 〈eA, eA〉 = ±1 such that e1, . . . en
are tangent to M and en+1, . . . , em are normal to M. We use the following con-
vention on the ranges of indices: 1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ r, s, t, . . . ≤ m,
1 ≤ A,B,C, . . . ≤ m.

Denote by ωA the dual-1 form of eA such that ωA (X) = 〈eA, X〉 and ωAB
the connection forms defined by

deA =
∑
B

εBωABeB , ωAB + ωBA = 0.

Then the formulas of Gauss and Weingarten are given by

∇̃ekei =

n∑
j=1

εjωij (ek) ej +

m∑
r=n+1

εrh
r
iker

and

∇̃ekes = −
n∑
j=1

εjh
s
kjej +Dekes, Dekes =

m∑
r=n+1

εrωsr (ek) er,

where D is the normal connection, hrik the coefficients of the second fundamental
form h.

For any real function f on M, the Laplacian operator of M with respect to
induced metric is given by

∆f = −εi
∑
i

(
∇̃ei∇̃eif − ∇̃∇ei

eif
)
. (2.1)

The mean curvature vector H and the Gaussian curvature Kof M in Ems are
defined by

H =
1

n

m∑
s=n+1

n∑
i=1

εiεsh
s
iies (2.2)

and

K =

m∑
s=n+1

εs (hs11h
s
22 − hs12hs21) , (2.3)

respectively. We recall that a surface M is called minimal if its mean curvature
vector vanishes identically, i.e. H = 0. If the mean curvature vector satisfies
DH = 0, then the surface M is said to have parallel mean curvature vector.
Also if Gaussian curvature of M vanishes identically, i.e. K = 0, the surface M
is called flat.
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3 Rotational Surfaces with Pointwise
1-Type Gauss Map in E4

2

In this section, we consider rotational surfaces of elliptic, hyperbolic and parabolic
type in four dimensional pseudo-Euclidean space E4

2 which are defined by Ganchev
and Milousheva in [10] and investigate these rotational surfaces with pointwise
1-type Gauss map.

We denote the standart orthonormal basis of E4
2 by {ε1, ε2, ε3, ε4} where ε1 =

(1, 0, 0, 0), ε2 = (0, 1, 0, 0), ε3 = (0, 0, 1, 0) and ε4 = (0, 0, 0, 1), and 〈ε1, ε1〉 =
〈ε2, ε2〉 = 1, 〈ε3, ε3〉 = 〈ε4, ε4〉 = −1.

3.1 Rotational surfaces of elliptic type with pointwise
1-type Gauss map in E4

2

In this subsection, first we consider the rotational surfaces of elliptic type with
harmonic Gauss map.Then, we give a characterization of the flat rotational
surfaces of elliptic type with pointwise 1-type Gauss map and obtain a relation-
ship for non-minimal these surfaces with parallel mean curvature vector and
pointwise 1-type Gauss map of the first kind.

Rotational surface of elliptic type M1 is defined by

ϕ (t, s) =


1 0 0 0
0 1 0 0
0 0 cos t − sin t
0 0 sin t cos t




x1(s)
x2(s)
x3(s)

0


M1 : ϕ (t, s) = (x1(s), x2(s), x3(s) cos t, x3(s) sin t) , (3.1)

where the surface M1 is obtained by the rotation of the curve

x(s) = (x1(s), x2(s), x3(s), 0)

about the two dimensional Euclidean plane span{ε1, ε2} . Let the profile curve of

M1 be unit speed spacelike curve. In that case, (x1
′(s))

2
+(x2

′(s))
2−(x3

′(s))
2

=
1. We suppose that x3(s) > 0. The moving frame field {e1, e2, e3, e4} on M1 is
determined as follows:

e1 = (x′1(s), x′2(s), x′3(s) cos t, x′3(s) sin t) ,

e2 = (0, 0,− sin t, cos t) ,

e3 =
1√

1 + x′3(s)2
(−x′2(s), x′1(s), 0, 0) ,

e4 =
1√

1 + x′3(s)2

(
x′3(s)x′1(s), x′3(s)x′2(s), (1 + x′3(s)2) cos t,

(1 + x′3(s)2) sin t
)
,

99



where e1, e2 and e3, e4 are tangent vector fields and normal vector fields to M1,
respectively.Then it is easily seen that

〈e1, e1〉 = 〈e3, e3〉 = 1, 〈e2, e2〉 = 〈e4, e4〉 = −1.

We have the dual 1-forms as:

ω1 = ds and ω2 = −x3(s)dt.

After some computations, the components of the second fundamental form and
the connection forms are given as follows:

h311 =− d(s), h312 = 0, h322 = 0,

h411 =− c(s), h412 = 0, h422 = b(s)
(3.2)

and

ω12 =a(s)b(s)ω2, ω13 = −d(s)ω1, ω14 = −c(s)ω1,

ω23 =0, ω24 = −b(s)ω2, ω34 = a(s)d(s)ω1.

By taking the covariant derivative with respect to e1 and e2 we have

∇̃e1e1 = −d(s)e3 + c(s)e4, (3.3)

∇̃e2e1 = a(s)b(s)e2,

∇̃e1e2 = 0,

∇̃e2e2 = a(s)b(s)e1 − b(s)e4,
∇̃e1e3 = d(s)e1 − a(s)d(s)e4,

∇̃e2e3 = 0,

∇̃e1e4 = c(s)e1 − a(s)d(s)e3,

∇̃e2e4 = b(s)e2,

where

a(s) =
x′3(s)√

1 + (x3′)
2
, (3.4)

b(s) =

√
1 + (x3′)

2

x3(s)
, (3.5)

c(s) =
x′′3(s)√

1 + (x3′)
2
, (3.6)

d(s) =
x′′1(s)x′2(s)− x′′2(s)x′1(s)√

1 + (x3′)
2

. (3.7)

By using (2.2), (2.3) and (3.2), the mean curvature vector and Gaussian curva-
ture of the surface M1 are obtained as:

H =
1

2
(−d(s)e3 + (c(s) + b (s)) e4) (3.8)
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and
K = c(s)b (s) , (3.9)

respectively.
By using (2.1) and (3.3), we find the Laplacian of the Gauss map of M1 as :

∆G = L(s) (e1 ∧ e2) +M(s) (e2 ∧ e3) +N(s) (e2 ∧ e4) , (3.10)

where
L(s) = d2(s)− b2 (s)− c2 (s) , (3.11)

M(s) = d′ (s) + a(s)d(s)(b(s) + c(s)), (3.12)

N(s) = b′(s) + c′(s) + a(s)d2(s). (3.13)

Theorem 3.1. Let M1 be rotation surface of elliptic type given by the parametriza-
tion (3.1). If M1 has harmonic Gauss map then it has constant Gaussian cur-
vature.

Proof. Let the Gauss map of M1 be harmonic, i.e., ∆G = 0. So, from (3.10),
(3.11), (3.12) and (3.13) we have

d2(s)− b2 (s)− c2 (s) = 0, (3.14)

d′ (s) + a(s)d(s)(b(s) + c(s)) = 0,

b′(s) + c′(s) + a(s)d2(s) = 0.

By multiplying both sides of the second equation of (3.14) with d(s) and using
the third equation of (3.14) we have

d(s)d′ (s)− b(s)b′ (s)− c(s)c′ (s) = (b(s)c(s))′. (3.15)

By differeniating the first equation of (3.14) with respect to s and us-
ing (3.15), we have that b(s)c(s) =constant.Hence, from (3.9) we get K =
K0 =constant.

Theorem 3.2. Let M1 be the flat rotational surface of elliptic type given by the
parametrization (3.1). Then M1 has a pointwise 1-type Gauss map if and only
if the profile curve of M1 is characterized by one of the following way:

i)

x1(s) =− 1

δ1
sin (−δ1s+ δ2) + δ4,

x2(s) =
1

δ1
cos (−δ1s+ δ2) + δ4,

x3(s) =δ3,

(3.16)

where δ1, δ2, δ3 and δ4 are real constants and the Gauss map of M1 satisfies
(1.1) for f = δ21 − 1

δ23
and C = 0. If δ1δ3 = ±1 then the function f becomes zero

and it implies that the Gauss map is harmonic.
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ii)

x1(s) =

∫ (
1 + λ21

) 1
2 cos

(
− λ3

λ1 (1 + λ21)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

x2(s) =

∫ (
1 + λ21

) 1
2 sin

(
− λ3

λ1 (1 + λ21)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

x3(s) =λ1s+ λ2,

(3.17)

where λ1, λ2, λ3 and λ4 are real constants and the Gauss map of M1 satisfies

(1.1) for f(s) = 1
(λ1s+λ2)

2

(
λ2
3

1+λ2
1
− 1
)

and C = λ21e1 ∧ e2 +λ1
(
1 + λ21

) 1
2 e2 ∧ e4.

Proof. We suppose that M1 has pointwise 1-type Gauss map. By using (1.1)
and (3.10), we get

−f + f 〈C, e1 ∧ e2〉 = −L(s), (3.18)

f 〈C, e2 ∧ e3〉 = −M(s),

f 〈C, e2 ∧ e4〉 = N(s)

and
〈C, e1 ∧ e3〉 = 〈C, e1 ∧ e4〉 = 〈C, e3 ∧ e4〉 = 0. (3.19)

By taking the derivatives of all equations in (3.19) with respect to e2 and using
(3.18) we obtain

a(s)N(s)− L(s) + f = 0, (3.20)

a(s)M(s) = 0,

M(s) = 0,

respectively. From above equations, we have two cases. One of them is a(s) = 0,
M(s) = 0 and the other is a(s) 6= 0, M(s) = 0. Firstly, we suppose that a(s) = 0
and M(s) = 0. By using (3.4), we have that x3(s) = δ3=constant. It implies
that c(s) = 0, b (s) = 1

δ3
and M1 is flat. Since the profile curve x is spacelike

curve which is parameterized by arc-length, we can put

x′1(s) = cos δ(s) (or resp. sin δ(s)),

x′2(s) = sin δ(s) (or resp. cos δ(s)),
(3.21)

where δ is smooth angle function. Without loss of generality we assume that

x′1(s) = cos δ (s) and x′2(s) = sin δ (s)

We can do similar computations for the another case, too. By using third
equation of (3.20) and (3.12) we obtain that

d (s) = δ1, δ1 is non zero constant. (3.22)
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On the other hand by using (3.7), (3.21) and (3.22) we get

δ (s) = −δ1s+ δ2, (3.23)

where δ1, δ2 are real constants. Then by substituting (3.23) into (3.21) and
taking the integral we have the equation (3.16). Also the Laplacian of the Gauss
map of M1 with the equations a(s) = 0, b (s) = 1

δ3
, c(s) = 0 and d (s) = δ1 is

found as ∆G =
(
δ21 − 1

δ23

)
G

Now we suppose that a(s) 6= 0 and M(s) = 0. Since the surface M1 is flat,
i.e., K = 0. By using (3.9) we have that c(s) = 0. From (3.6) we get

x3(s) = λ1s+ λ2 (3.24)

for some constants λ1 6= 0 and λ2. In that case by using (3.4), (3.5) and (3.24)
we have

a(s) =
λ1

(1 + λ21)
1
2

(3.25)

and

b(s) =

(
1 + λ21

) 1
2

λ1s+ λ2
. (3.26)

Let consider that M(s) = 0 with c(s) = 0. In that case from (3.12), we obtain
that

d′ (s) + a(s)b(s)d(s) = 0 (3.27)

By using (3.25), (3.26) and (3.27) we have

d(s) =
λ3

λ1s+ λ2
, (3.28)

where λ3 is constant of integration. On the other hand, Since the profile curve
x is spacelike curve which is parameterized by arc-length, we can put

x′1(s) =
(
1 + λ21

) 1
2 cosλ (s) , (3.29)

x′2(s) =
(
1 + λ21

) 1
2 sinλ (s) ,

where λ is smooth angle function. By differentiating (3.29). we obtain

x′′1(s) = −
(
1 + λ21

) 1
2 sinλ (s)λ′ (s) , (3.30)

x′′2(s) =
(
1 + λ21

) 1
2 cosλ (s)λ′ (s) .

By using (3.7), (3.24), (3.29) and (3.30), we get

d(s) = −
(
1 + λ21

) 1
2 λ′ (s) . (3.31)

By combining (3.28) and (3.31) we obtain

λ (s) = − λ3

λ1 (1 + λ21)
1
2

ln(λ1s+ λ2) + λ4. (3.32)
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So by substituting (3.32) into (3.29), we get

x1(s) =

∫ (
1 + λ21

) 1
2 cos

(
− λ3

λ1 (1 + λ21)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

x2(s) =

∫ (
1 + λ21

) 1
2 sin

(
− λ3

λ1 (1 + λ21)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

Conversely, the surface M1 whose the profil curve given by (3.17) is pointwise
1-type Gauss map for

f(s) =
1

(λ1s+ λ2)
2

(
λ23

1 + λ21
− 1

)
and

C = λ21e1 ∧ e2 + λ1
(
1 + λ21

) 1
2 e2 ∧ e4.

Theorem 3.3. A non- minimal rotational surfaces of elliptic type M1 defined
by (3.1) has pointwise 1-type Gauss map of the first kind if and only if the mean
curvature vector of M1 is parallel .

Proof. From (3.8) we have that H = 1
2 (−d(s)e3 + (c(s) + b (s)) e4) . Let the

mean curvature vector of M1 be parallel, i.e., DH = 0. Then we get

De1H =
1

2
(−M(s)e3 +N(s)e4) = 0.

In this case we obtain that M(s) = N(s) = 0. From (3.10), we have that
∆G = L(s)e1 ∧ e2.

Conversely, if M1 has pointwise 1-type Gauss map of the first kind then
from (3.10) we get M(s) = N(s) = 0 and it implies that M1 has parallel mean
curvature vector.

Corollary 3.4. If rotational surfaces of elliptic type M1 given by (3.1) is min-
imal then it has pointwise 1-type Gauss map of the first kind.

3.2 Rotational surfaces of hyperbolic type with pointwise
1-type Gauss map in E4

2

In this subsection, first we consider rotational surfaces of hyperbolic type with
harmonic Gauss map. Moreover, we obtain a characterization of flat rotational
surfaces of hyperbolic type with pointwise 1-type Gauss map and give a rela-
tionship for non-minimal these surfaces with parallel mean curvature vector and
pointwise 1-type Gauss map of the first kind. The proofs of theorems in this
subsection are similar the proofs of theorems in previous section so we give the
theorems as without proof.
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Rotational surface of hyperbolic type M2 is defined by

ϕ (t, s) =


cosh t 0 sinh t 0

0 1 0 0
sinh t 0 cosh t 0

0 0 0 1




x1(s)
x2(s)

0
x4(s)


M2 : ϕ (t, s) = (x1(s) cosh t, x2(s), x1(s) sinh t, x4(s)) , (3.33)

where the surface M2 is obtained by the rotation of the curve

x(s) = (x1(s), x2(s), 0, x4(s))

about the two dimensional Euclidean plane spanned by ε2 and ε4. Let the profile
curve of M2 be unit speed spacelike curve. In that case (x1

′(s))
2

+ (x2
′(s))

2 −
(x4
′(s))

2
= 1. We assume that x1(s) > 0. The moving frame field {e1, e2, e3, e4}

on M2 is choosen as follows:

e1 = (x′1(s) cosh t, x′2(s), x′1(s) sinh t, x′4(s)) ,

e2 = (sinh t, 0, cosh t, 0) ,

e3 =
1√

ε (x′1(s)2 − 1)
(0, x′4(s), 0, x′2(s)) ,

e4 =
1√

ε(x′1(s)2 − 1)

( (
x′1(s)2 − 1

)
cosh t,−x′1(s)x′2(s),

(
x′1(s)2 − 1

)
sinh t,

−x′1(s)x′4(s)
)
,

where e1, e2 and e3, e4 are tangent vector fields and normal vector fields to
M2, respectively and ε is signature of (x1

′)
2 − 1. If (x1

′)
2 − 1 is positive (resp.

negative) then ε = 1 (resp. ε = −1). It is easily seen that

〈e1, e1〉 = −〈e2, e2〉 = 1, 〈e3, e3〉 = −〈e4, e4〉 = ε.

we have the dual 1-forms as:

ω1 = ds and ω2 = −x1(s)dt.

After some computations, components of the second fundamental form and the
connection forms are obtained by:

h311 =d(s), h312 = 0, h322 = 0,

h411 =c(s), h412 = 0, h422 = −εb(s)
(3.34)

and

ω12 =a(s)b(s)ω2, ω13 = d(s)ω1, ω14 = c(s)ω1,

ω23 =0, ω24 = εb(s)ω2, ω34 = a(s)d(s)ω1.
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Differentiating covariantly with respect to e1 and e2 we get

∇̃e1e1 = εd(s)e3 − εc(s)e4 (3.35)

∇̃e2e1 = a(s)b(s)e2

∇̃e1e2 = 0

∇̃e2e2 = a(s)b(s)e1 + b(s)e4

∇̃e1e3 = −d(s)e1 − εa(s)d(s)e4

∇̃e2e3 = 0

∇̃e1e4 = −c(s)e1 − εa(s)d(s)e3

∇̃e2e4 = −εb(s)e2

where

a(s) =
x′1(s)√

ε
(

(x1′)
2 − 1

) ,

b(s) =

√
ε
(

(x1′)
2 − 1

)
x1(s)

,

c(s) =
x′′1(s)√

ε
(

(x1′)
2 − 1

) ,
d(s) =

x′′2(s)x′4(s)− x′′4(s)x′2(s)√
ε
(

(x1′)
2 − 1

) .

By using (2.2), (2.3) and (3.34), the mean curvature vector and Gaussian cur-
vature of the surface M2 are obtained as follows:

H =
1

2
(εd(s)e3 − ε (c(s) + εb (s)) e4)

and
K = c(s)b (s) ,

respectively.
By using (2.1) and (3.35) , we find the Laplacian of the Gauss map of M2

as:
∆G = L(s) (e1 ∧ e2) +M(s) (e2 ∧ e3) +N(s) (e2 ∧ e4) ,

where
L(s) = ε

(
d2(s)− c2 (s)− b2 (s)

)
,

M(s) = ε (d′ (s) + εa(s)d(s) (c(s) + εb (s))) ,

N(s) = −ε
(
c′(s) + εb′(s) + εa(s)d2(s)

)
.
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Theorem 3.5. Let M2 be rotation surface of hyperbolic type given by the pa-
rameterization (3.33). If M2 has Gauss map harmonic then it has constant
Gaussian curvatrure.

Theorem 3.6. Let M2 be flat rotation surface of hyperbolic type given by the
parameterization (3.33). Then M2 has pointwise 1-type Gauss map if and only
if the profile curve of M2 is characterized in one of the following way:

i)

x1(s) = δ1,

x2(s) = − 1

δ2
sinh (−δ2s+ δ3) + δ4,

x4(s) = − 1

δ2
cosh (−δ2s+ δ3) + δ4,

where δ1, δ2, δ3 and δ4 are real constants and the Gauss map G satisfies
(1.1) for f = 1

δ21
− δ22 and C = 0. If δ1δ2 = ±1 then the function f becomes zero

and it implies that the Gauss map is harmonic.
ii)

x1(s) = λ1s+ λ2,

x2(s) =

∫ (
λ21 − 1

) 1
2 sinh

(
λ3

λ1 (λ21 − 1)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

x4(s) =

∫ (
λ21 − 1

) 1
2 cosh

(
λ3

λ1 (λ21 − 1)
1
2

ln(λ1s+ λ2) + λ4

)
ds,

where λ1, λ2, λ3 and λ4 are real constants and without loss of generality we
suppose that λ21−1 > 0. Morever the Gauss map G satisfies (1.1) for the function

f(s) = 1
(λ1s+λ2)

2

(
1− λ2

3

λ2
1−1

)
and C = −λ21e1 ∧ e2 + λ1

(
λ21 − 1

) 1
2 e2 ∧ e4.

Theorem 3.7. A non- minimal rotational surfaces of hyperbolic type M2 defined
by (3.33) has pointwise 1-type Gauss map of the first kind if and only if M2 has
parallel mean curvature vector

Corollary 3.8. If rotational surfaces of hyperbolic type M2 given by (3.33) is
minimal then it has pointwise 1-type Gauss map of the first kind.

3.3 Rotational surfaces of parabolic type with pointwise
1-type Gauss map in E4

2

In this subsection, we study rotational surfaces of parabolic type with pointwise
1-type Gauss map. We show that flat rotational surface of parabolic type has
pointwise 1-type Gauss map if and only if its Gauss map is harmonic. Also we
conclude that flat rotational surface of parabolic type has harmonic Gauss map
if and only if it has parallel mean curvature vector.
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We consider the pseudo-orthonormal base {ε1, ξ2, ξ3, ε4} of E4
2 such that ξ2 =

ε2+ε3√
2
, ξ3 = −ε2+ε3√

2
〈ξ2, ξ2〉 = 〈ξ3, ξ3〉 = 0 and 〈ξ2, ξ3〉 = −1. Let consider α

spacelike curve is given by

x (s) = x1(s)ε1 + x2(s)ε2 + x3(s)ε3

or we can express x according to pseudo-orthonormal base {ε1, ξ2, ξ3, ε4} as
follows:

x (s) = x1(s)ε1 + p(s)ξ2 + q(s)ξ3,

where p(s) = x2(s)+x3(s)√
2

and q(s) = −x2(s)+x3(s)√
2

. The rotational surface of

parabolic type M3 is defined by

M3 : ϕ (t, s) = x1(s)ε1 + p(s)ξ2 + (−t2p(s) + q(s))ξ3 +
√

2tp(s)ε4, (3.36)

We suppose that x is parameterized by arc-length, that is, (x1
′(s))

2−2p′(s)q′(s) =
1. Now we can give a moving orthonormal frame {e1, e2, e3, e4} for M3 as follows:

e1 = x1
′(s)ε1 + p′(s)ξ2 + (−t2p′(s) + q′(s))ξ3 +

√
2tp′(s)ε4,

e2 = −
√

2tξ3 + ε4,

e3 = ε1 +
x1
′(s)

p′(s)
ξ3,

e4 = x1
′(s)ε1 + p′(s)ξ2 + (

1

p′(s)
+ q′(s)− t2p′(s))ξ3 +

√
2tp′(s)ε4,

where p′(s) is non zero. Then it is easily seen that

〈e1, e1〉 = 〈e3, e3〉 = 1, 〈e2, e2〉 = 〈e4, e4〉 = −1.

We have the dual 1-forms as:

ω1 = ds and ω2 = −
√

2p (s) dt.

Also we obtain components of the second fundamental form and the connection
forms as:

h311 =c(s), h312 = 0, h322 = 0,

h411 =− b(s), h412 = 0, h422 = a(s)
(3.37)

and

ω12 =a(s)ω2, ω13 = c(s)ω1, ω14 = −b(s)ω1,

ω23 =0, ω24 = −a(s)ω2, ω34 = −c(s)ω1.

Then, by taking the covariant derivatives with respect to e1 and e2, weget as
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follows:

∇̃e1e1 = c(s)e3 + b(s)e4, (3.38)

∇̃e2e1 = a(s)e2,

∇̃e1e2 = 0,

∇̃e2e2 = a(s)e1 − a(s)e4,

∇̃e1e3 = −c(s)e1 + c(s)e4,

∇̃e2e3 = 0,

∇̃e1e4 = b(s)e1 + c(s)e3,

∇̃e2e4 = a(s)e2,

where

a(s) =
p′(s)

p(s)
, (3.39)

b(s) =
p′′(s)

p′(s)
, (3.40)

c(s) =
x′′1(s)p′(s)− p′′(s)x′1(s)

p′(s)
. (3.41)

By using (2.2), (2.3) and (3.37), the mean curvature vector and Gaussian cur-
vature of the surface M3 are obtained as follows:

H =
1

2
(c(s)e3 + (a(s) + b (s)) e4) (3.42)

and
K = a(s)b (s) , (3.43)

respectively.
By using (2.1) and (3.38), we find the Laplacian of the Gauss map of M3 by

∆G = L(s) (e1 ∧ e2) +M(s) (e2 ∧ e3) +N(s) (e2 ∧ e4) , (3.44)

where
L(s) = c2(s)− a2 (s)− b2 (s) , (3.45)

M(s) = c′ (s) + c(s)(a(s) + b(s)), (3.46)

N(s) = c2(s) + a′ (s) + b′ (s) . (3.47)

Theorem 3.9. Let M3 be flat rotation surface of parabolic type given by the
parameterization (3.36). Then M3 has pointwise 1-type Gauss map if and only
if the profile curve of M3 is given by

x1(s) =
ε

µ1
(ln(µ1s+ µ2)(µ1s+ µ2)) + (µ4 − ε) s+ µ5,

p(s) = µ1s+ µ2,

q(s) =
1

2µ1

∫ (
(ε ln (µ1s+ µ2) + µ4)

2 − 1
)
ds,
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where µ1, µ2, µ4, µ5 real constants. Morever the surface M3 has harmonic
Gauss map for f = 0.

Proof. We suppose that M3 has pointwise 1-type Gauss map. In that case the
Gauss map of M3 satisfies (1.1). By using (1.1) and (3.44), we get

−f + f 〈C, e1 ∧ e2〉 = −L(s), (3.48)

f 〈C, e2 ∧ e3〉 = −M(s),

f 〈C, e2 ∧ e4〉 = N(s)

and
〈C, e1 ∧ e3〉 = 〈C, e1 ∧ e4〉 = 〈C, e3 ∧ e4〉 = 0. (3.49)

By taking the derivatives of all equations in (3.49) with respect to e2 and using
(3.48) we obtain

L(s)−N(s) = f, (3.50)

M(s) = 0,

respectively. Since the surface M3 is flat, i.e., K = 0 from (3.43) we have that
b(s) = 0. From (3.40) we obtain that

p(s) = µ1s+ µ2 (3.51)

for some constants µ1 6= 0 and µ2. By using (3.39) and (3.51) we have that

a(s) =
µ1

µ1s+ µ2
. (3.52)

If we consider M(s) = 0 with the equations b(s) = 0 and a(s) = µ1

µ1s+µ2
, from

(3.46) we get

c(s) =
µ3

µ1s+ µ2
. (3.53)

On the other hand, by using the first equation of (3.50), (3.45), (3.47), (3.52)
and (3.53) we obtain that f = 0. It means that L(s) = N(s) = 0 and we have

µ3 = εµ1, ε = ±1.

If we consider (3.41), (3.51) and (3.53) we get

x1(s) =
ε

µ1
(ln(µ1s+ µ2)(µ1s+ µ2)) + (µ4 − ε) s+ µ5, (3.54)

where µ4, µ5 are constants of integration. Since x is unit speed spacelike curve
we get

q′(s) =
(x1
′(s))

2 − 1

2p′(s)
. (3.55)

By substituting (3.51) and (3.54) into (3.55) we obtain

q(s) =
1

2µ1

∫ (
(ε ln (µ1s+ µ2) + µ4)

2 − 1
)
ds.

This completes the proof.
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Theorem 3.10. Let M3 be flat rotational surfaces of parabolic type given by
(3.36). M3 has harmonic Gauss map if and only if its mean curvature vector is
parallel.

Proof. We suppose that M3 has parallel mean curvature vector, i.e., DH = 0.
From (3.42) we have that

De1H =
1

2
(M(s)e3 +N(s)e4) = 0.

In this case we obtain that M(s) = N(s) = 0. Since M3 is a flat surface, from
the previous theorem we have

b(s) = 0 and a(s) =
µ1

µ1s+ µ2
.

By considering the equation M(s) = 0 with above equations and using (3.46)
we get

c(s) =
µ3

µ1s+ µ2
,

where µ3 is the constant of integration. It implies that L(s) = 0. Hence we
obtain that Gauss map of M3 is harmonic .

Conversely, if M3 is harmonic then it is easily seen that DH = 0.

The first author is supported by Ahi Evran University :PYO-EGF.4001.15.002.
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