
Parallel Mean Curvature
Surfaces in

Four-Dimensional
Homogeneous Spaces
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1 Introduction

Surface Theory in three-dimensional manifolds is a classical topic in Differen-
tial Geometry. Although the most extensive investigation has been carried out
in ambient three-manifolds with constant curvature, the so-called space forms,
there has been a growing interest in considering the broader family of homoge-
neous three-manifolds. Among the different geometrically distinguished families
of surfaces, we will focus on those which have constant mean curvature (cmc in
the sequel). When the codimension is bigger than one, a natural generalization
of cmc surfaces are those whose mean curvature vector is not constant but par-
allel in the normal bundle. These surfaces are called parallel mean curvature
surfaces (pmc from now on, see Definition 2.1), and enjoy some of the properties
of cmc surfaces in codimension one.

The aim of this work is to gather some results on the classification of pmc
surfaces when the codimension is two and the ambient space is homogeneous,

57



sketching a parallelism with cmc surfaces in homogeneous three-manifolds. The
connection between these two theories principally comes from the fact that cmc
surfaces in totally umbilical cmc hypersurfaces of a four-manifold become pmc
surfaces (cf. Proposition 3.1). When the four-manifold is homogeneous typically
such a hypersurface is also homogeneous. Nonetheless, there could be pmc sur-
faces not factoring through a hypersurface in this sense, as we will discuss below.
The interested reader can refer to [DHM09] and [MP12] for an introduction to
cmc surfaces in homogeneous three-manifolds. Another approach that covers
both cmc and pmc surfaces as critical points of extended area functionals can
be found in [Sal10].

In the seventies, Ferus [Fer71] proved that an immersed pmc sphere in a
space form is a round sphere (cf. Theorem 4.3), and afterwards Chen [Che73]
and Yau [Yau74] classified pmc surfaces in space forms, showing that they are
cmc surfaces in three-dimensional totally umbilical hypersurfaces (cf. Theo-
rem 5.1). It is also important to mention the contribution of Hoffman [Hof73],
who classified pmc surfaces of R4 and S4 in terms of analytical functions assum-
ing their Gauss curvature does not change sign.

Almost thirty years later, Kenmotsu and Zhou [KZ00] undertook the classi-
fication of pmc surfaces in the complex space forms CP2 and CH2, based on a
result of Ogata [Oga95]. However, soon thereafter Hirakawa [Hir06] pointed out
a mistake in Ogata’s equation, but gave a classification of the pmc spheres in
CP2 and CH2. The mistake was corrected in [KO15] but the classification was
still incomplete. Finally, Kenmotsu has recently published a correction [Ken16]
that closes the classification problem. The complete classification then follows
from both [Hir06] and [Ken16].

The classification of pmc surfaces in four-dimensional manifolds has also
been treated in M3(c)×R, where Mn(c) denotes the n-dimensional space form
of constant sectional curvature c. On the one hand, de Lira and Vitório [dLV10]
classified the pmc spheres (cf. Theorem 4.12). On the other hand, Alencar, do
Carmo and Tribuzy [ACT10] proved reduction of codimension for pmc surfaces
in Mn(c)×R (cf. Theorem 5.3) also classifying pmc spheres (cf. Theorem 4.13).
Mendonça and Tojeiro [MT14] improved Alencar, do Carmo and Tribuzy’s result
under some additional conditions (see Section 5.1).

A few years ago, the second author and Urbano [TU12] classified the pmc
spheres in the product four-manifolds S2 × S2 and H2 × H2, as well as a large
family of pmc surfaces that satisfy an extra condition on the extrinsic normal
curvature (cf. Theorem 5.8). Fetcu and Rosenberg also tackled the problem in
other ambient manifolds obtaining several partial results, namely, in S3×R and
H3 × R [FR12], in Mn(c) × R [FR13], in CPn × R and CHn × R [FR14] and
also in Sasakian space forms [FR15], including the Heisenberg space of any odd
dimension.

An interesting family where to study the classification problem for pmc sur-
faces in is that of the four-dimensional Thurston geometries, i.e., homogeneous
four-manifolds whose isometry group acts transitively and effectively on them,
and the stabilizer subgroup at each point is compact. Usually the isometry
group is required to be maximal in the sense that it cannot be enlarged to
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another subgroup. Under these assumptions, there are 19 types of Thurston
geometries in dimension 4, listed in Table 1 below. We will emphasize the prod-
uct geometries, which might be the first spaces where pmc surface should be
understood:

• The product spaces M3(c)×R (see Sections 4.4 and 5.2). The classification
of the pmc spheres was done by de Lira and Vitório [dLV10], but the
general classification remains open.

• The product spaces M2(c1)×M2(c2). The classification of spheres is known
when c1 = c2 (see Sections 4.3 and 5.4), but the general case remains still
open, although there are some partial results (see Section 4.5).

• The product spaces Nil3×R, S̃l2(R)×R and Sol3×R (the latter is included
in the family Sol4m,n in Table 1).

Dropping the condition on the maximality of the isometry group, a simply con-
nected homogeneous four-dimensional product manifold is either of the form
M2(c1)×M2(c2) or G×R, where G is a Lie group endowed with a left-invariant
metric (see [MP12]). In the latter family, it is worth highligthing the fam-
ily E(κ, τ) × R where E(κ, τ), κ − 4τ2 6= 0, denotes the two-parameter fam-
ily of simply connected three-manifolds with isometry group of dimension four
(see [VdV08], [DHM09] and the references therein).

The existence of holomorphic quadratic differentials for pmc surfaces has
been central in their classification. Note that cmc surfaces in E(κ, τ)-spaces
admit a holomorphic quadratic differential called the Abresch-Rosenberg dif-
ferential [AR05]. This fact plays a key role in the definition of holomorphic
quadratic differentials for pmc surfaces in H3 ×R and S3 ×R (see Section 5.2).

Geometry Isotropy dim(Iso) Kähler
S4, R4, H4 SO4 10 No, except R4

CP2, CH2 U2 9 Yes
S3 × R, H3 × R SO3 7 No
S2 × S2, H2 × H2, S2 × R2,

S2 ×H2, H2 × R2
SO2 × SO2 6 Yes

S̃l2(R)× R, Nil3 × R, Sol40 SO2 5 No
F4 (S1)1,2 5 Yes

Nil4, Sol4m,n, Sol41 {1} 4 No

Table 1: List of Thurston four-dimensional geometries, their isotropy group
(cf. [Wal86, §1] and [Mai98]), the dimension of their isometry group and
whether they admit a Kähler structure compatible with the geometric struc-
ture (cf. [Wal86, Theorem 1.1]). The spaces S̃l2(R) × R, Nil3 × R, Sol40, and
Sol41 are not Kähler but do admit complex structures. Here, (S1)m,n denotes
the image of the unit circle S1 ⊂ C in U2 by z 7→ (zm, zn).

It is worth mentioning that pmc surfaces have been also studied in pseudo-
Riemannian manifolds. A classification was achieved for non-degenerate pmc
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surfaces in the four-dimensional Lorentzian space forms [CV09]. It turns out
that, as in the Riemannian case, all pmc surfaces lie in three-dimensional sub-
manifolds. This classification was afterwards extended to any codimension and
any signature of the metric (see [Che09] for the spacelike case and [Che10, FH10]
for the timelike case). In the sequel we will restrict ourselves to the Riemannian
case.

2 Definitions and first properties

Let M be an n-dimensional orientable Riemannian manifold with metric 〈 , 〉
and Levi-Civita connection ∇, and let φ : Σ→M be an isometric immersion of
an orientable Riemannian surface Σ. The tangent space TpΣ will be identified
with dφ(TpΣ) ⊂ Tφ(p)M in the sequel, so the metric on Σ will also be denoted by
〈 , 〉 since the immersion is isometric. Therefore Tφ(p)M admits an orthogonal

decomposition Tφ(p)M = TpΣ⊕T⊥p Σ, where T⊥Σ is the so-called normal bundle
of the immersion. This leads to considering the space X(Σ) of (tangent) vector
fields, i.e., smooth sections of TΣ, and the space X⊥(Σ) of normal vector fields,
i.e., smooth sections of T⊥Σ. We will denote by u> ∈ TpΣ and u⊥ ∈ T⊥p Σ the
components of a vector u ∈ Tφ(p)M with respect to this decomposition.

Given a normal vector field η ∈ X⊥(Σ), we can define the shape operator
associated with η as the self-adjoint endomorphism Aη : X(Σ)→ X(Σ) given by
Aη(X) = −(∇Xη)>. Then the second fundamental form σ : X(M) × X(M) →
X⊥(Σ) satisfies 〈σ(X,Y ), η〉 = 〈Aη(X), Y 〉 for all X,Y ∈ X(Σ) and η ∈ X⊥(Σ).
The mean curvature vector H of the immersion at p ∈ Σ is defined as H(p) =
1
2 (σ(e1, e1) + σ(e2, e2)), where {e1, e2} is an orthonormal basis of TpΣ.

The normal bundle T⊥Σ can also be endowed with a connection∇⊥ : X(Σ)×
X⊥(Σ) → X⊥(Σ) defined as ∇⊥Xη = (∇Xη)⊥ for all X ∈ X(Σ) and η ∈ X⊥(Σ).
This connection is called the normal connection, and gives rise to a curvature
tensor R⊥ : X(Σ)× X(Σ)× X⊥(Σ)→ X⊥(Σ), given by

R⊥(X,Y )η = ∇⊥X∇⊥Y η−∇⊥Y∇⊥Xη−∇⊥[X,Y ]η, X, Y ∈ X(Σ), η ∈ X⊥(Σ). (2.1)

Definition 2.1 (Parallel mean curvature immersion). An isometric immersion
φ : Σ → M is said to have parallel mean curvature (pmc for short) if its mean
curvature vector H ∈ X⊥(Σ) is parallel in the normal bundle, i.e., ∇⊥H = 0,
but not identically zero.

Remark 2.2. The minimal case H = 0 has been excluded from Definition 2.1
due to several reasons that will become clear after Lemma 2.4. Essentially, it
is not possible to define a natural orthonormal frame in the normal bundle if
H = 0, which is crucial for some of the arguments below.

Although several results in higher codimension will be mentioned hereinafter,
let us assume now that the codimension is 2, where pmc surfaces enjoy additional
properties. In the first place, we will furnish the normal bundle with a natural
orientation provided that both M and Σ are oriented, and define a notion of
curvature in the normal bundle.

60



Definition 2.3. A basis {η, ν} in T⊥p Σ is said to be positively oriented if and
only if {e1, e2, η, ν} is positively oriented in Tφ(p)M whenever {e1, e2} is a posi-
tively oriented basis of TpΣ.

The normal curvature of φ is the smooth function K⊥ ∈ C∞(Σ) defined by

K⊥(p) = 〈R⊥(e1, e2)e3, e4〉, (2.2)

where {e1, e2, e3, e4} is an orthonormal basis of TpM such that {e1, e2} and
{e3, e4} are positively oriented bases in TpΣ and T⊥p Σ, respectively.

Lemma 2.4. Let φ : Σ → M be a pmc immersion. Then the mean curvature
vector H has constant length (in particular, H never vanishes). If additionally
the codimension is 2, then:

(i) There exists a unique parallel normal field H̃ ∈ X⊥(Σ) such that the global

frame {H̃/|H|, H/|H|} is positively oriented and orthonormal in T⊥Σ.

(ii) K⊥ is identically zero, i.e., the normal bundle is flat.

(iii) The Ricci equation for the Riemann curvature tensor R of M reads

〈R(X,Y )H, η〉 = 〈[Aη, AH ]X,Y 〉, X, Y ∈ X(Σ), η ∈ X⊥(Σ). (2.3)

Remark 2.5. Flatness of the normal bundle of a pmc surface is a typical property
in codimension 2. If the codimension is bigger than 2, it is possible to define
likewise the normal sectional curvature of the normal bundle, but it does not
necessarily vanish for pmc surfaces.

Proof. Since H is parallel in the normal bundle we have

X(|H|2) = 2〈∇XH,H〉 = 2〈∇⊥XH,H〉 = 0,

for all X ∈ X(Σ), so |H| is constant on Σ. As for (i), the normal bundle is
orientable in the sense of Definition 2.3, so we can define a rotation Rp of angle
π/2 in T⊥p Σ such that {η,Rpη} is positively oriented for all η ∈ T⊥p Σ. This
rotation leaves the normal bundle of Σ invariant, and should not be confused
with a possible complex structure on M .

Hence H̃ = −RH is such that {H̃/|H|, H/|H|} is a positively oriented global

orthonormal frame of the normal bundle. Moreover, H̃ is also parallel since it
has constant length and is orthogonal to the parallel vector field H. Given
a positively oriented orthonormal frame {e1, e2} in TΣ, we can consider e3 =

H̃/|H| and e4 = H/|H|, so Equation (2.1) and the fact that H̃ is parallel yield

|H|R⊥(e1, e2)e3 = ∇⊥e1∇
⊥
e2H̃ −∇

⊥
e2∇

⊥
e1H̃ −∇

⊥
[e1,e2]H̃ = 0,

|H|R⊥(e1, e2)e4 = ∇⊥e1∇
⊥
e2H −∇

⊥
e2∇

⊥
e1H −∇

⊥
[e1,e2]H = 0.

(2.4)

From (2.2) and the first equation in (2.4), we get that K⊥ ≡ 0, so (ii) is
proved. Finally, given X,Y ∈ X(Σ) and ξ, η ∈ X⊥(Σ), the Ricci equation reads
R(X,Y, ξ, η) = R⊥(X,Y, ξ, η)−〈[Aξ, Aη]X,Y 〉, so (iii) is a consequence of taking
ξ = H in the Ricci equation and of the second identity in (2.4).
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3 The relation between cmc and pmc
surfaces

Parallel mean curvature surfaces are often considered the natural generalization
to higher codimension of cmc surfaces in three-manifolds, so a leading idea in
the study of pmc surfaces in four-manifolds is to reduce the codimension and rely
on results for cmc surfaces. Our first approach to this idea will consist in finding
natural assumptions on a hypersurface N of a four-manifold M guaranteeing
that any cmc surface immersed in N has parallel mean curvature vector in M .
This is evident if N is totally geodesic, but this condition can be relaxed as the
following result ensures.

Proposition 3.1. Let N be a totally umbilical cmc hypersurface of a four-
manifold M . Then every cmc surface immersed in N is either pmc or minimal
in M .

Proof. Let φ : Σ → N be a cmc immersion with second fundamental form σ̃
and mean curvature vector H̃. The immersion φ can also be regarded as an
immersion into M , so let us denote by σ and H the second fundamental form
and the mean curvature vector of the immersion φ : Σ → M , respectively. We
will also define σ̂ and Ĥ as the second fundamental form and the mean curvature
vector of N as a hypersurface of M , respectively.

Since σ = σ̃+ σ̂, taking the trace on Σ we get that 2H = 2H̃+ 3Ĥ− σ̂(η, η),
where η is a unit normal vector field to φ(Σ) tangent to N . Taking into account

that N is totally umbilical, i.e., σ̂(x, y) = 〈x, y〉Ĥ for all x, y ∈ TN , we finally

get that H = H̃ + Ĥ. Taking the derivative of this last equation with respect
to a tangent vector field V ∈ X(Σ) gives

∇⊥VH =
(
∇V (H̃ + Ĥ)

)⊥
= (∇V H̃)⊥ + (∇V Ĥ)⊥

=
(
∇NV H̃ + σ̂(V, H̃)

)⊥
+ (∇V Ĥ)⊥

= (∇NV H̃)⊥ + (〈V, H̃〉H̃)⊥ + (∇V Ĥ)⊥ = (∇V Ĥ)⊥,

where ∇N is the Levi-Civita connection of N and we have taken into account
that (∇NV H̃)⊥ = 0 since H̃ has constant length. We distinguish two cases:

• If Ĥ = 0 (N is a totally geodesic hypersurface of M), then ∇⊥VH =

(∇V Ĥ)⊥ = 0 and H is parallel, so we are done.

• Assume now that Ĥ 6= 0. Observe that 〈∇V Ĥ, Ĥ〉 = 0 since Ĥ has

constant length, so (∇V Ĥ)⊥ is proportional to a unit vector field η, normal
to Σ, but tangent to N . Hence

(∇V Ĥ)⊥ = 〈∇V Ĥ, η〉η = −〈Ĥ,∇V η〉η = −〈Ĥ, σ̂(V, η)〉η

= −〈Ĥ, 〈V, η〉Ĥ〉η = 0,

where we used again that N is a totally umbilical hypersurface in M .
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Remark 3.2. Under the assumptions of Proposition 3.1, the mean curvature
vector H of Σ in M is just the sum of the mean curvature vector H̃ of Σ in
N and the mean curvature vector Ĥ of N in M , i.e., we have the orthogonal
decomposition H = H̃ + Ĥ. Hence Σ is pmc if and only if ∇⊥H = 0 and Σ is
not minimal in N or N is not totally geodesic in M .

Let us analyse how Proposition 3.1 can be applied in different four-manifolds
where totally umbilical surfaces are classified in order to construct pmc surfaces.

1. In the space forms R4, S4 and H4, totally umbilical hypersurfaces have
constant sectional curvature and constant mean curvature. Hence, the
pmc surfaces provided by Proposition 3.1 are cmc surfaces in the three-
dimensional space forms R3, S3 or H3 embedded totally umbilically in the
four-dimensional space form.

2. There are no totally umbilical hypersurfaces in the complex space forms
CP2 and CH2 [TT63]. This is one of the difficulties when trying to produce
examples of pmc immersions. In fact, there are no pmc spheres in CP2

or in CH2 (cf. Theorem 4.6).

3. In S3 × R and H3 × R there are plenty of totally umbilical hypersurfaces
since both spaces are locally conformally flat, but only the totally geodesic
ones have constant mean curvature [MT14]. Since totally geodesic sub-
manifolds in a product are the product or totally geodesic submanifolds,
we conclude that such totally geodesic hypersurfaces are locally congruent
to S3, H3, S2 × R, or H2 × R.

4. In a Riemannian product M2(c1) × M2(c2) of two surfaces of constant
Gaussian curvatures c1 and c2, with (c1, c2) 6= (0, 0), the only totally
umbilical hypersurfaces with constant mean curvature are totally geodesic.
Hence, they are open subsets of products of one surface and a geodesic in
the other surface. This was proven for S2 × S2 and H2 ×H2, where both
factors have the same curvature, in [TU12], but the proof can easily be
extended to the other cases.

5. Consider E(κ, τ) × R, the Riemannian product of a homogeneous three-
space with the Euclidean line. If κ− 4τ2 = 0, the first factor has constant
sectional curvature and the classification of totally umbilical hypersurfaces
with constant mean curvature has been treated in item 3. If τ = 0 (and
κ 6= 0), the first factor is either S2 × R or H2 × R, so the space under
consideration is either S2 × R2 or H2 × R2, which have been treated in
item 4. In all other cases, if was proven in [ST09, VdV08] that there
are no totally umbilical surfaces in E(κ, τ), so the only totally umbilical
hypersurfaces of E(κ, τ) × R are open parts of the slices E(κ, τ) × {t0}.
A more general result in G × R, where G is a simply connected three-
dimensional Lie group endowed with a left-invariant metric, follows from
the classification of totally umbilical surfaces in G (see [MS15]).
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4 Quadratic differentials and the
classification of pmc spheres

As in the theory of cmc surfaces in homogeneous Riemannian three-manifolds,
the existence of quadratic differentials that are holomorphic for pmc immersions
comes in handy in some ambient four-manifolds. For instance, in symmetric
four-manifolds such as

• the space forms R4, S4 and H4,

• the complex hyperbolic and projective spaces CP2 and CH2,

• the Riemannian products S2 × S2 and H2 ×H2,

it is possible to define two holomorphic quadratic differentials for pmc surfaces.
It is also hitherto possible to define one holomophic quadratic differential in
a few other cases, such as in M3(c) × R and M2(c1) × M2(c2) (de Lira and
Vitório [dLV10] and Kowalczyk [Kow11]), or in Sasakian space forms (Rosen-
berg and Fetcu [FR15]). This is instrumental, for instance, in the classification
of pmc spheres in the aforementioned spaces, for the fact that a non-trivial
holomorphic differential vanishes often gives precious information.

Throughout this section, we will consider a pmc immersion φ : Σ→M of an
oriented surface Σ into a four-manifold M with second fundamental form σ. As
in the previous section, ∇ and ∇ will denote the Levi-Civita connections in Σ
and M , respectively, and R will stand for the Riemann curvature tensor of M .
Also, z = x+ iy will be a conformal parameter on Σ with conformal factor e2u,
giving rise to the usual basic vectors ∂z = 1

2 (∂x − i∂y) and ∂z̄ = 1
2 (∂x + i∂y).

Lemma 4.1. Under the previous assumptions, the following formulae hold:

(i) 〈∂z, ∂z̄〉 = 1
2e

2u and 〈∂z, ∂z〉 = 0.

(ii) ∇∂z∂z̄ = ∇∂z̄∂z = 0 and ∇∂z∂z = 2uz∂z.

(iii) 2σ(∂z̄, ∂z) = e2uH.

(iv) 〈σ(∂z, ∂z), η〉z̄ = 〈R(∂z̄, ∂z)∂z, η〉 for any parallel normal section η.

Proof. (i) is a consequence of z being a conformal parameter, (ii) is a direct com-
putation using Koszul’s formula and (iii) is straightforward from the definition
of ∂z and ∂z̄. We prove (iv):

〈σ(∂z, ∂z), η〉z̄ = 〈∇⊥∂z̄σ(∂z, ∂z), η〉+ 〈σ(∂z, ∂z),∇⊥∂z̄η〉
= 〈(∇∂z̄σ)(∂z, ∂z) + 2σ(∇∂z̄∂z, ∂z), η〉
= 〈(∇∂zσ)(∂z̄, ∂z) +R(∂z̄, ∂z)∂z, η〉
= 〈∇⊥∂zσ(∂z̄, ∂z)− σ(∇∂z∂z̄, ∂z)− σ(∂z̄,∇∂z∂z) +R(∂z̄, ∂z)∂z, η〉
= 〈∇⊥∂z ( 1

2e
2uH)− uze2uH +R(∂z̄, ∂z)∂z, η〉 = 〈R(∂z̄, ∂z)∂z, η〉,
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where we have taken into account (ii), (iii), the fact that η is parallel, the defi-
nition of the covariant derivative of σ and the Codazzi equation (∇Xσ)(Y,Z)−
(∇Y σ)(X,Z) = (R(X,Y )Z)⊥.

From now on z = x+ iy will denote a conformal parameter on Σ compatible
with the orientation and H̃ is given in Lemma 2.4.

4.1 Space forms

Let M = M4(c) be the space form of constant sectional curvature c ∈ R, and
define in conformal coordinates the quadratic differentials

Θ(z) = 〈σ(∂z, ∂z), H〉dz ⊗ dz,

Θ̃(z) = 〈σ(∂z, ∂z), H̃〉dz ⊗ dz.
(4.1)

Equation (4.1) defines globally Θ and Θ̃, i.e., their expressions do not depend
upon the choice of the conformal parameter.

Proposition 4.2. Let φ : Σ → M4(c) be a parallel mean curvature immersion

of an oriented surface Σ. Then Θ and Θ̃ defined by (4.1) are holomorphic
quadratic differentials.

Proof. Taking into account that 〈R(∂z̄, ∂z)∂z, η〉 is zero for any normal vector
field η in a space form, the statement follows from Lemma 4.1.

Theorem 4.3 (Ferus [Fer71], see also [Hof73, Theorem 2.2]). Let φ : S →M4(c)
be a pmc immersion of a sphere S in a space form. Then φ(S) is contained in
a totally umbilical hypersurface of M4(c) as a minimal surface.

Proof. For illustration purposes, we will prove the case c = 0, that is, M4(0) =

R4. Since S is a sphere and φ is a pmc immersion, both Θ and Θ̃ defined in (4.1)
vanish. Since Θ = 0, we obtain that AH = |H|2Id (i.e., φ is pseudo-umbilical).

Arguing as in the classical proof that complete and connected totally umbil-
ical surfaces in R3 are spheres or planes, we consider the function f : S → R4

given by f(p) = Hp + |Hp|2φ(p). For any tangent vector field V ∈ X(S) we get

V (f) = V (H + |H|2φ) = ∇VH + |H|2V = −AHV +∇⊥VH + |H|2V = 0,

by using the pseudo-umbilicity, and identifying TpS with its image by dφ in
Tφ(p)M4(c). Hence f is constant a ∈ R4, so the immersion satisfies∣∣∣∣φ− a

|H|2

∣∣∣∣2 =
1

|H|2
.

This means that φ(S) is contained in a sphere S3 ⊂ R4 of radius 1/|H|, which

is totally umbilical in R4 with mean curvature |Ĥ| = |H|. Thus the mean

curvature H̃ = H − Ĥ of S as a surface of S3 is zero (observe that H and Ĥ

have the same length, and H̃ and Ĥ are orthogonal, see Remark 3.2).
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Remark 4.4. In the proof of Theorem 4.3 we have only used one of the holomor-
phic differentials associated to the pmc immersion to get the result. Neverthe-
less, both holomorphic differentials will be needed to get a complete classification
of pmc immersions in space forms (cf. Theorem 5.1) as well as to classify pmc
spheres in S2 × S2 and H2 ×H2 (cf. Theorem 4.9).

Besides, [ACT10] showed that the spheres are not the only pmc surfaces in
space forms for which the quadratic differential Θ vanishes identically: there is
also a complete non-flat example in Hn with non-negative Gaussian curvature
(cf. Remark 4.10).

4.2 Complex hyperbolic and projective spaces

Let us consider M = CM2(c), i.e., the complex projective or hyperbolic space of
constant holomorphic curvature c, also including C2 = CM2(0). The situation
in the complex space forms is quite similar to that of real space forms, due to the
fact that Fetcu [Fet12] defined a couple of holomorphic quadratic differentials
associated with pmc immersions in CM2(c).

The Riemann tensor of these spaces reads

R(X,Y )Z =
c

4

{
〈Y, Z〉X−〈X,Z〉Y +〈JY , Z〉JX−〈JX,Z〉JY −2〈X, JY 〉JZ

}
,

(4.2)
where J : X(M)→ X(M) is the complex structure, which satisfies:

1. J2 = −Id.

2. J is an isometry, i.e., 〈JX, JY 〉 = 〈X,Y 〉.

3. J is parallel, i.e., ∇XJY = J∇XY , being ∇ the Levi-Civita connection
of CM2(c).

Proposition 4.5 ([Fet12, Proposition 2.3 and Section 3.1]). Let φ : Σ →
CM2(c) be a pmc immersion of an oriented suface Σ, and let z = x + iy be
a conformal parameter on Σ. Then

Θ(z) =
(
8|H|2〈σ(∂z, ∂z), H〉+ 3c〈Jφz, H〉2

)
dz ⊗ dz,

Θ̃(z) =
(
8i|H|2〈σ(∂z, ∂z), H̃〉+ 3c〈Jφz, H̃〉2

)
dz ⊗ dz,

(4.3)

define two quadratic holomorphic differentials on Σ.

On the one hand, if c = 0, then these differentials reduce to the corresponding
diffentials in Cn ≡ R2n. On the other hand, the appearance of the new extra
term 〈JΦz, H〉 can be motivated by the fact that the Codazzi equation in CM2(c)
is not as simple as in the case of M4(c).

Proof. The holomorphicity follows easily from Lemma 4.1, from the expression
of the Riemann tensor (4.2) and from the following equalities:

〈JH, H̃〉 = 2i|H|2e−2u〈JΦz,Φz̄〉, (JΦz)
> = 2e−2uΦz.
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Let us justify the first one, by showing that if {e1, e2, e3, e4} is an oriented
orthonormal basis, then 〈Je1, e2〉 = 〈Je3, e4〉. Let C = 〈Je1, e2〉, which satisfies
C2 ≤ 1 by Cauchy-Schwarz inequality. If C2 = 1, then Je1 = ±e2, so Je3 = ±e4

and we are done. If C2 < 1, let us define ẽ3 = (1 − C2)−1/2(Ce1 + Je2) and
ẽ4 = (1 − C2)−1/2(Je1 − Ce2). Then {ẽ3, ẽ4} is an oriented orthonormal basis
spanning the same plane as {e3, e4}, so they differ in a rotation of angle θ, and
it is easy to check that 〈Je3, e4〉 = 〈Jẽ3, ẽ4〉 = C.

Although there exist two holomorphic quadratic differentials, there is no
direct proof of the classification of the pmc spheres in CM2(c). All the known
proofs use the structure equations for pmc surfaces in CM2(c) provided by
Ogata [Oga95]. The proof given by Fetcu in [Fet12, Corollary 3.2] uses the two
holomorphic differentials to show that such a sphere must have constant Gauss
curvature, so the result follows from [Hir06, Theorem 1.1].

Theorem 4.6 ([Hir06, Corollary 1.2] and also [Fet12, Corollary 3.2]). Let φ :
S → CM2(c) a pmc immersion of a sphere S. Then c = 0 and S is a round
sphere in a hyperplane of C2.

This non-existence result of pmc spheres in CH2 and CP2 contrasts with the
rest of the symmetric spaces, where there do exist pmc spheres (cf. Theorem 4.3
and Theorem 4.9). In other Thurston four-geometries like M3(c)×R, M2(c1)×
M2(c2), E(κ, τ) × R or Sol3 × R, there always exist pmc spheres, since H3

and the E(κ, τ)-spaces or Sol3 do admit cmc spheres (see the comments below
Proposition 3.1).

4.3 The Riemannian products S2 × S2 and H2 ×H2

Now let M = M2(ε) ×M2(ε), where M2(ε) stands for the 2-sphere S2 (ε = 1)
or the hyperbolic plane H2 (ε = −1). Since both S2 and H2 admit a complex
structure J , we can define on M two different (but equivalent) complex struc-
tures J1 = (J, J) and J2 = (J,−J) (see [TU12, Section 3]). Moreover, we can
define a product structure P : TM → TM as P (u, v) = (u,−v), which enjoys
the following properties:

1. P is a self-adjoint linear involutive isometry of every tangent plane of M .

2. J2 = PJ1 = J1P

3. P is parallel, i.e., ∇XPY = P∇XY for all X,Y ∈ X(M).

The operator P allows us to write the Riemann tensor of M2(ε)×M2(ε) as

R(X,Y )Z =
ε

2

[
〈Y,Z〉X − 〈X,Z〉Y + 〈Y, PZ〉PX − 〈X,PZ〉PY

]
. (4.4)

In particular, M2(ε)×M2(ε) is an Einstein manifold of constant scalar curvature
4ε (this is no longer true in the general case M2(c1) ×M2(c2)). The existence
of two holomorphic differential was shown in [TU12].
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Proposition 4.7 ([TU12, Proposition 3]). Let φ : Σ→M2(ε)×M2(ε) be a pmc
immersion of an oriented suface Σ, and let z = x+ iy be a conformal parameter
on Σ. Then

Θ1(z) =

(
2〈σ(∂z, ∂z), H + iH̃〉+

ε

4|H|2
〈J1φz, H + iH̃〉2

)
dz ⊗ dz,

Θ2(z) =

(
2〈σ(∂z, ∂z), H − iH̃〉+

ε

4|H|2
〈J2φz, H − iH̃〉2

)
dz ⊗ dz,

(4.5)

are two holomorphic quadratic differentials.

Proof. It also follows from Lemma 4.1 after some manipulations, as in the pre-
vious cases.

Remark 4.8. The differentials Θ1 and Θ2 can be chosen in different ways, since
any linear combination of them is also holomorphic. As a particular case and
taking into account that 〈J1φz, H〉 = i〈J1φz, H̃〉, 〈J2φz, H〉 = −i〈J2φz, H̃〉, and
J2 = PJ1, we can define the following two holomorphic quadratic differentials
(cf. equation (4.3)):

Θ =
(

4|H|2〈σ(∂z, ∂z), H〉+ ε
[
〈J1φz, H〉2 + 〈J1φz, PH〉2

])
dz ⊗ dz

Θ̃ =
(

4i|H|2〈σ(∂z, ∂z), H̃〉 − ε
[
〈J1φz, H̃〉2 − 〈J1φz, P H̃〉2

])
dz ⊗ dz

(4.6)

It is easy to show that Θ = |H|2(Θ1 + Θ2) and Θ̃ = |H|2(Θ1 − Θ2), so these
expressions make it clear that Θ1 and Θ2 extend the classical differentials in R4

given by (4.1).

Using that these two differentials vanish on spheres, it is shown in [TU12]
that the extrinsic normal curvature of an immersed pmc sphere has to be zero.
Then the following classification is a consequence of Theorem 5.8.

Theorem 4.9 ([TU12, Corollary 1]). Let φ : S → M2(ε) ×M2(ε), ε2 = 1, be
a pmc immersion of a sphere S. Then φ is a cmc sphere in a totally geodesic
hypersurface of M2(ε)×M2(ε).

Remark 4.10. It is interesting to highlight that pmc spheres are not the only
surfaces with vanishing holomorphic differentials. Indeed, the product of two
hypercycles in H2×H2 with curvatures satisfying k2

1 +k2
2 = 1 and a special em-

bedding of the hyperbolic plane in H2×H2 also satisfy that condition (see [TU12,
Theorem 4]).

4.4 The Riemannian products M3(c)× R
The study of pmc surfaces in M = M3(c) × R was tackled by de Lira and
Vitório [dLV10], as well as by Alencar, Do Carmo and Tribuzy [ACT10]. As in
all the previous cases these authors found a holomorphic quadratic differential.
In spite of their claim that there are two holomorphic differentials Qh and Qv,
a deeper analysis shows that Qh and Qv coincide.
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The Riemann tensor of M3(c)× R is given by:

R(X,Y )Z =
c

4

(
〈Y + PY ,Z〉(X + PX)− 〈X + PX,Z〉(Y + PY )

)
= c
(
〈Y,Z〉X − 〈X,Z〉Y − 〈Y, ζ〉〈Z, ζ〉X + 〈X, ζ〉〈Z, ζ〉Y+

+ 〈X,Z〉〈Y, ζ〉ζ − 〈Y, Z〉〈X, ζ〉ζ
)
,

(4.7)

where P is the product structure in T (M3(c) × R) ≡ TM3(c) × R given by
P (u, t) = (u,−t) for all u ∈ TM3(c), and t ∈ R, and ζ is a unit tangent
vector to the factor R. The second expression in (4.7) follows from the identity
PX = X − 2〈X, ζ〉ζ for all X ∈ X(M).

Proposition 4.11. Let φ : Σ→M3(c)×R be a pmc immersion of an oriented
surface Σ and let z = x+ iy be a conformal parameter. Then

Θ(z) =
(
2〈σ(∂z, ∂z), H〉 − c〈φz, ζ〉2

)
dz ⊗ dz

=
(
2〈σ(∂z, ∂z), H〉+ c

2 〈φz, Pφz〉
)
dz ⊗ dz

(4.8)

is a holomorphic quadratic differential in Σ.

Proof. Both expressions for Θ coincide, which follows from the equality Pφz =
φz − 2〈φz, ζ〉ζ and the fact that z is a conformal parameter, i.e., 〈φz, φz〉 =
0. Using now Lemma 4.1 and the second equality in (4.7), we deduce that
〈σ(∂z, ∂z), H〉z̄ = c

2e
2u〈φz, ζ〉〈H, ζ〉, and also

(〈φz, ζ〉2)z̄ = 2〈φz, ζ〉〈∇∂z̄φz, ζ〉 = e2u〈φz, ζ〉〈H, ζ〉,

where we have taken into account that ζ is a parallel vector field. Consequently,
the differential is holomorphic.

De Lira and Vitório use this quadratic differential Θ to classify the pmc
spheres in M3(c)×R by showing that there is a principal frame {e1, e2} on the
surface such that the the associated curvature lines to e1 lie in horizontal slices.
Then an analysis of these curvature lines leads to the following result:

Theorem 4.12 ([dLV10, Theorem 3.2]). The only pmc spheres immersed in
M3(c) × R are the rotationally invariant cmc surfaces embedded in totally
geodesic cylinders M2(c)× R or in totally geodesic slices M3(c)× {t0}, t0 ∈ R.

A result of the same kind is obtained by Alencar, do Carmo and Tribuzy in
M4(c) × R (codimension 3), as we show next. One expects that a pmc sphere
in M4(c) × R lies either in a slice M4(c) × {t0} or in some M2(c) × R as a
cmc sphere (hence rotationally invariant). Unfortunately, a further reduction
of the codimension still remains an open problem, which would give the complete
classification of pmc spheres in Mn(c)× R for all n ≥ 4 (see Theorem 5.3).

Theorem 4.13 ([ACT10, Theorem 2]). Let φ : S → M4(c) × R be a pmc
immersion of a sphere S. Then one of the following assertions holds:
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(i) φ(S) is contained in a totally umbilical hypersurface of M4(c)× {t0} as a
cmc surface.

(ii) Considering M4(c) × R isometrically embedded in R6 (c = 1) or R6
1 (c =

−1), there is a plane Π such that φ(S) is invariant under rotations which
fix Π⊥, and the level curves of the height function p 7→ 〈φ(p), ζ〉 are circles
lying in planes parallel to Π.

Remark 4.14. Mendonça and Tojeiro [MT14] improve item (ii) in the previous
result by showing that, in general codimention, φ(Σ) is a rotationally surface
in a totally geodesic Mm(c) × R, m ≤ 4, over a curve in a totally geodesic
Ms(c)× R, s ≤ 3.

4.5 The Riemannian products M2(c1)×M2(c2).

Let us finally consider M = M2(c1)×M2(c2). Following the notation introduced
in Section 4.3, the Riemann tensor of M can be expressed as

R(X,Y )Z = c1R0(P1X,P1Y )Z + c2R0(P2X,P2Y )Z,

where R0(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y , P1 = 1
2 (I + P ) and P2 = 1

2 (I − P ) are
the projections to the factors, i.e., P1(u, v) = (u, 0) and P2(u, v) = (0, v).

De Lira and Vitório [dLV10] defined a holomorphic quadratic differential for
pmc surfaces in S2×H2 (where the constant Gauss curvatures of the factors are
exactly opposite) and the holomorphicity of this differential also follows from
the ideas in [TU12]. Kowalczyk [Kow11] extended this by defining a quadratic
differential in the general case of M2(c1)×M2(c2), cf. the next proposition. In
contrast to the previous cases, the classification of pmc spheres in M2(c1) ×
M2(c2) is still an open problem, even in S2 × H2. The natural candidates are
those given by Proposition 3.1, i.e., cmc spheres immersed in totally geodesic
hypersurfaces of M2(c1)×M2(c2).

Proposition 4.15. Let φ : Σ → M2(c1) ×M2(c2) be a pmc immersion of an
oriented surface Σ and z = x+ iy a conformal parameter. Then

Θ(z) =
(

2|H|2〈σ(∂z, ∂z), H〉+ c1〈R0(P1φz, P1H)H,φz〉

− c2〈R0(P2φz, P2H)H,φz〉
)

dz ⊗ dz
(4.9)

is a holomorphic quadratic differential on Σ.

In the case c1 = c2 = ±1, the holomorphic differential given by (4.9) is a
linear combination of the two holomorphic differentials in Proposition 4.7.

5 The general non-spherical case

Proposition 3.1 reveals that the ambient spaces considered above are plentiful
of pmc immersions in general: any cmc immersion into a totally umbilical
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cmc hypersurface is pmc. Nonetheless, this description does not give all pmc
surfaces in general, as examples in complex space forms or in product manifolds
M2(ε)×M2(ε) below show. On account of the fact that listing all pmc surfaces
is not reasonable, instead local classification results have been considered so far,
based either on reducing the codimension to the cmc case (space form cases and
Mn(c)×R), or on associating some analytic data with the immersion (complex
hyperbolic and projective spaces, see also Hoffman’s examples [Hof73, Theorem
5.1] in R4 at the end of Section 5.1). We will present as well results with extra
conditions on the immersion.

5.1 PMC surfaces in space forms

Chen [Che73] classified pmc surfaces in Euclidean space R4, and Yau [Yau74]
gave an independent classification in an arbitrary space form M4(c).

Theorem 5.1 ([Yau74, Theorem 4]). Let φ : Σ→ M4(c) be a pmc immersion
of an oriented surface Σ. Then Σ is contained in a totally umbilical hypersurface
of M4(c) as a cmc surface.

Remark 5.2. Although Theorem 5.1 is stated in dimension four, Chen and Yau
proved this result in arbitrary dimension, showing, more precisely that either φ
is minimal in a totally umbilical hypersurface of Mn(c), or φ is a cmc immersion
into a totally umbilical three-dimensional submanifold of Mn(c).

Proof. The idea is to use both differentials defined by (4.1) to show the existence
of a parallel normal section ξ such that Aξ = λ Id, and the same argument as
in the proof of Theorem 4.3 will ensure that Σ satisfies the desired conditions
To illustrate this, let us assume c = 0.

If Θ = 0, then AH = |H|2 Id and we can reason as in the proof of Theo-

rem 4.3. Likewise, if Θ̃ = 0, then AH̃ = λ Id with λ = 〈H, H̃〉 = 0 so p 7→ H̃p

is constant in R4 since V (H̃) = −AH̃V + ∇⊥V H̃ = 0 for all V ∈ X(Σ). The

function f : Σ→ R defined as f(p) = 〈φ(p)−φ(p0), H̃〉 for some p0 ∈ Σ satisfies

V (f) = 〈V, H̃〉+ 〈φ(p)− φ(p0),∇V H̃〉 = 0, for all V ∈ X(Σ),

so f is constant and φ(Σ) lies in a hyperplane of R4. Moreover, φ(Σ) has
constant mean curvature in this hyperplane

Hence we can assume that Θ and Θ̃ are not identically zero. It is not hard
to prove that the imaginary part of the meromorphic function g : Σ → C,
g(p) = Θ(p)/Θ̃(p), coincides with the commutator [AH , AH̃ ], which is zero by
the Ricci equation (2.3). Hence the imaginary part of g identically vanishes,
whence g ≡ tan(α) for some constant |α| < π

2 . The normal vector field ξ =

cos(α)H − sin(α)H̃ is parallel and satisfies Aξ = cosα|H|2 Id, so we can again
continue as in the proof of Theorem 4.3, considering the function f(p) = ξp +
cosα|H|2φ(p).
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For illustrative purposes, let us consider Lawson’s minimal examples [Law70,
Theorem 2] in S3 as a pmc surfaces in Rn, n ≥ 4. Hence, any compact orientable
surface of genus g can be embedded as a pmc surface in Rn, n ≥ 4. Hoffman gave
more examples of pmc surfaces in the space forms not lying in any hypersphere
as minimal surfaces [Hof73, Theorem 5.1]. More particularly, he showed that,
given any holomorphic function ϕ : U → C on an open domain U ⊆ C, and
constants H > 0 and α ∈ R there exists a pmc immersion in M4(c) such that

the length of the mean curvature vector is H, Θ = ϕ(dz)2 and Θ̃ = αϕ(dz)2.

5.2 PMC surfaces in S3 × R and H3 × R
Alencar, Do Carmo and Tribuzy [ACT10] studied pmc immersions in Mn(c)×
R, c 6= 0, for arbitrary n. They realized that the quadratic differential (4.8)
introduced by de Lira and Vitório [dLV10] is holomorphic for any n ≥ 2 (for
n = 2 it is actually the Abresch-Rosenberg differential [AR05]). They showed
that for a pmc immersion in Mn(c) × R either H is an umbilical direction,
i.e., AH = |H|2Id (so φ(Σ) lies in a slice Mn(c) × R, see items (i) and (ii) in
Theorem 5.3), or one can reduce the codimension to three.

Theorem 5.3 ([ACT10, Theorem 1]). Let φ : Σ → Mn(c) × R be a pmc
immersion of an oriented surface Σ. Then, one of the following assertions
holds:

(i) φ(Σ) is minimal in a totally umbilical hypersurface of Mn(c)×{t0}, t0 ∈ R.

(ii) φ(Σ) is cmc in a three-dimensional totally umbilical submanifold of Mn(c)×
{t0}, t0 ∈ R.

(iii) If n ≥ 4, then φ(Σ) lies in a totally geodesic M4(c)× R.

Remark 5.4. Notice that Theorem 5.3 does not provide a classification of pmc
surfaces in M3(c) × R or in M4(c) × R. Therefore the final classification of
pmc surfaces in Mn(c) × R depends upon the cases n = 3 and n = 4, which
remain open. Moreover, pmc spheres have only been classified for n = 3 (cf.
Theorem 4.12), though it is proven that they must be rotationally invariant for
n = 4 [ACT10, Theorem 2].

Mendonça and Tojeiro have also discussed pmc immersions in Mn(c) × R
in [MT14]. They obtained more information adding an extra hypothesis. They
show that, if φ(Σ) is not contained in a slice (cases (i) and (ii) in Theorem 5.3)
and Θ ≡ 0 then φ(Σ) is rotationally invariant in the sense exposed in Re-
mark 4.14. In particular, this condition is fulfilled if either Σ is diffeomorphic
to a sphere or Σ is a complete non-flat surface in Hn × R with non-negative
Gaussian curvature (cp. Remarks 4.4 and 4.10).

In order to prove the latter assertion, observe that if Θ 6≡ 0, then ∆ log |Θ| =
4K ≥ 0, i.e., log |Θ| is a superharmonic function bounded from below in Σ. Since
K ≥ 0 it follows that Σ has quadratic area growth, so log |Θ| must be constant
in view of [CY75, Corollary 1]. From the fact that |Θ| is constant, it follows
that K is also constantly zero.
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This idea was previously developed by Hoffman [Hof73] for pmc surfaces in
space forms. It is worth pointing out that Hoffman was able to deal with the
cases K ≥ 0 and K ≤ 0 in both S4 and H4, by finding suitable superharmonic
functions bounded from below and reducing to the constant Gauss curvature
case. On the contrary, Alencar, do Carmo and Tribuzy only treated the case
K ≥ 0 in Hn(c)× R. This result has been extended to Sn(c)× R by Fetcu and
Rosenberg [FR11, Theorem 1.2] by using a Simon-type equation.

5.3 PMC surfaces in CH2 and CP2

The classification of pmc surfaces in CP2 and CH2 appeared first in a paper
of Kenmotsu and Zhou [KZ00]. Unfortunately, their result depended upon the
structure equations for pmc surfaces given by Ogata [Oga95], which turned out
to be incorrect (see [KO15] for the correction). However, Hirakawa [Hir06, The-
orem 2.1], who spotted Ogata’s mistake, gave a partial solution to the problem,
recently completed by Kenmotsu [Ken16] in a non-explicit way.

Given an immersion of an oriented surface Σ in CM2(c) (or more generally,
in any complex manifold), the Kähler function C : Σ → [−1, 1] is defined by
C(p) = 〈Je1, e2〉, where {e1, e2} is an oriented orthonormal basis of TpΣ and
J is the complex structure (some authors define θ = arccosC as the Kähler
angle of the immersion instead). The points p ∈ Σ where C2(p) = 1 are called
complex, that is, they are the points where TpΣ is complex. Likewise, the points
p where C(p) = 0 are the points where TpΣ is totally real. In particular, if C is
constant zero, then the immersion is Lagrangian.

The main goal of [Hir06] was to study pmc surfaces with constant Gauss
curvature (in particular, constant Kähler angle pmc surfaces, see the following
paragraph), but Hirakawa also dealt with pmc surfaces satisfying a technical

condition in Ogata’s equation, namely a = ā, where a = 〈J∇C,H + iH̃〉 (see
Remark 5.6). This condition implies geometrically the existence of special co-
ordinates in Σ such that the C only depends on one coordinate, see [KO15].
He also pointed out some examples that were missing in Kenmotsu and Zhou’s
paper. Hirakawa found, among others, pmc spheres and Delaunay cmc surfaces
in R3 ⊂ R4, and gave four different types of solutions in C2, one type in CP2 and
CH2 with H2 ≥ 2, and two special types in CH2 for H2 = 4/3. Kenmotsu de-
scribed the rest of pmc examples in CP2 and CH2, that is, those with a 6= ā (in
particular with non-constant Kähler angle) in terms of a real-valued harmonic
function and five real constants (cp. [Hof73, Theorem 5.1]).

Theorem 5.5 ([Hir06, Theorem 2.1] and [Ken16]). Let Σ be a pmc surface

immersed in CM2(c) and a : Σ → C given by a = 〈J∇C,H + iH̃〉, where ∇C
is the gradient of the Kähler function and H̃ is defined in Lemma 2.4.

1. If a is a real-valued function, then one of the following assertions holds:

(i) |H|2 ≥ −c/2 and the immersion is Lagrangian, or

(ii) |H|2 = −c/3 and either the Kähler function is constant 1/3 or it is
a special solution (see item (iii)-2 in [Hir06, Theorem 2.1]).
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2. If a 6= ā, then the solution depends on one real-valued harmonic function
and five real constants.

Remark 5.6. Our definition of a differs from the definition in [Hir06, Ken16] in
a multiplicative real function plus a constant term − 1

2 |H|, which is irrelevant
for the statement. Actually,

a =
1

2|H|(1− C2)
〈∇C, J(H − iH̃)〉 − 1

2
|H|,

which is defined in the open dense set Σ \ {p ∈ Σ : C(p)2 = 1} (observe that
the interior of the set {p ∈ Σ : C(p)2 = 1} is empty since otherwise the interior
will be a complex surface, hence minimal, and we are supposing that Σ is pmc).

Remark 5.7. Among the solutions given by Theorem 5.5, the following are those
with constant Gauss curvature (see [Hir06, Theorem 1.1]):

• Either K = −H2/2 and Σ ⊂ CM2(−3|H|2) is (an open piece of):

(i) the slant surface found by Chen in [Che98], or

(ii) one of the examples described in [Hir06, Examples, p. 230].

• Or K = 0 and the immersion is Lagrangian and Σ is (an open piece of):

(i) the product of two circles in CP2(c), c > 0, [DT95, Theorem 2], or

(ii) a plane, a cylinder, or a product of two circles in CH2(c), c < 0 with
|H|2 ≥ −c/2, [Hir04, Theorem 1].

In Theorem 5.5 we omitted the case of C2 on purpose. Nevertheless, Hoff-
man [Hof73, Proposition 3.4] proved that a pmc flat surface in C2 is part of a
cylinder or a product of two circles (see also [Che90, Theorem 7.1]). Hirakawa
also studied pmc surfaces with constant Gauss curvature in C2 (see items (2)-(b)
and (3) in [Hir06, Theorem 1.1] and item (ii) in [Hir06, Theorem 2.1]).

5.4 PMC surfaces in S2 × S2 and H2 ×H2

The case M2(ε) ×M2(ε), ε2 = 1, is of different nature to the other cases we
have presented so far. The classification is still incomplete, being only known
under an extra assumption on the extrinsic normal curvature. This curvature is
defined in the same fashion as the normal curvature K⊥, but using the ambient
Riemannian curvature tensor R in Equation (2.2) rather than the curvature
tensor R⊥.

Theorem 5.8 ([TU12, Theorems 2 and 3]). Let φ : Σ → M2(ε) × M2(ε) be
a pmc immersion of an oriented surface Σ with vanishing extrinsic normal
curvature. Then φ is locally congruent to

1. a cmc surface in a totally geodesic M2(ε)×M1(ε), or

2. a specific example given in [TU12, Example 1 and Proposition 5].
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Moreover, if φ is Lagrangian (not necessarily with vanishing extrinsic normal
curvature), then φ(Σ) is an open set of the examples given in [TU12, Example 1].

Remark 5.9. Among the examples described in [TU12], there are pmc surfaces
not lying in a totally geodesic hypersurface of M2(ε)×M2(ε).

The proof, which will not be sketched here, heavily relies upon the complex
structure of M2(ε)×M2(ε), not only on the product structure as in other cases.
It is worth mentioning that there is also a local correspondence between pairs
of cmc immersions in M2(ε)×R and pmc immersions in M2(ε)×M2(ε) [TU12,
Theorem 1]. This relation provides a weak rigidity result for cmc surfaces in
M2(ε)×R. It is conjectured that the condition on the extrinsic normal curvature
can be dropped, but probably that problem needs a different approach. If this
conjecture were true, it would also imply a strong rigidity result for cmc surfaces
in S2 × R and H2 × R (cf. [TU12, Corollary 3]).
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