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1 INTRODUCTION

In [7], Chen defined biharmonic submanifold as a Riemannian submanifold with
vanishing Laplacian of mean curvature vector field AH. Curves in a Euclidean
space satisfying the condition A+H = AH were classified in [2], by Barros and
Garay, where A+ denotes the Laplacian of the curve in the normal bundle and
A is a real valued function. In the real space form, the classification of curves
satisfying AH = AH and A+H = \H were given in [1], by Arroyo, Barros and
Garay.

A curve in a contact metric manifold is said to be slant [9], if its tan-
gent vector field has a constant angle with the Reeb vector field. In partic-
ular, if the contact angle is equal to 5, then the curve is called a Legendre
curve. In [8], Cho and Lee studied slant curves in pseudo-Hermitian contact
3-manifolds. Legendre curves with pseudo-Hermitian parallel mean curvature
vector field, pseudo-Hermitian proper mean curvature vector field and pseudo-
Hermitian proper mean curvature vector field in the normal bundle in contact
pseudo-Hermitian 3-manifolds were studied by Lee in [12]. In [14], the present
author and Giiveng studied slant curves with pseudo-Hermitian parallel mean
curvature vector field, pseudo-Hermitian proper mean curvature vector field and
pseudo-Hermitian proper mean curvature vector field in the normal bundle in
contact pseudo-Hermitian 3-manifolds. The notions of C-parallel and C-proper
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curves in the tangent and normal bundles were introduced by Lee, Suh and
Lee in [13]. A curve in an almost contact metric manifold is defined to be
C-parallel it Vo H = X,, C-proper if AH = \¢, C-parallel in the normal bundle
if V&EH = M\, C-proper in the normal bundle if A*H = )\, where T is the
unit tangent vector field of the curve and X is a differentiable function along the
curve. In [13], Lee, Suh and Lee studied C-parallel and C-proper slant curves in
Sasakian 3-manifolds. C-parallel and C-proper slant curves in trans-Sasakian
manifolds were studied in [15], by Giiveng and the present author. On the other
hand, slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry were
studied by Calin and Crasmareanu in [6]. Slant curves in normal almost contact
geometry were studied in [5].

Motivated by the above studies, in the present paper, we study pseudo-
Hermitian C-parallel and C-proper slant curves in contact metric 3-manifolds.
We give two examples of pseudo-Hermitian Legendre circle and pseudo-Hermitian
slant helix in Sasakian Heisenberg group.

2 PRELIMINARIES

Let M be a (2n+ 1)-dimensional manifold. M is called a contact manifold [3] if
there exists a global 1-form 7 such that n A (dn)™ # 0 everywhere on M. Given
a contact form 7, there exists a unique vector field £, the characteristic vector
field, which satisfies n(§) = 1 and dn(X, &) = 0 for any vector field X on M.
There exists an associated Riemannian metric g and a (1, 1)-type tensor field ¢
satisfying

PPX =X +0(X)§, n(X)=g(X,8), dX,Y)=g(X,eY), (21)
for all X,Y € x(M). From (2.1), it is easy to see that

eE=0, nop=0, g(eX,pY)=g(X,Y)—nX)n). (2.2)

A Riemannian manifold equipped with the structure tensors (¢, &, 7, g) satis-
fying (2.1) is called a contact metric manifold. It is denoted by M = {M, ¢,&,n, g}
The operator h is defined by h = %Lg(p, where L is the Lie differentiation op-
erator in the characteristic direction £&. From the definition of h, it is easy to
see that h is symmetric and satisfies the following equations (see [3], page 67):

h& =0, hp=—ph, Vx{=-9pX —phX, (2.3)

where V denotes the Levi-Civita connection.
For a (2n 4 1)-dimensional contact metric manifold M = {M, p,&,n, g}, the
almost complex structure J on M x R is defined by

where X is a vector field tangent to M, t is the coordinate function of R and f
is a C*° function on M x R. If J is integrable then the contact metric manifold
M is called a Sasakian manifold [3].
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For a (2n + 1)-dimensional contact metric manifold M = {M,p,&,n, g}
provides a splitting of the tangent bundle

TM = Ker(y) @ Im(p)

and the restriction J = ¢ |p defines an almost complex structure on D = Im(yp).
There is a well-known concept of almost C R-structure as follows: Let M be a
(2n + s)-dimensional smooth manifold. Let D be a smooth distribution on M
of real dimension 2n and J a (1,1)-tensor field on M such that

J’X=-X, XeD.

Then (D, J) is called almost complex distribution (or an almost C'R-structure).
Then M is an almost C R-manifold (or a contact strongly pseudo-convez pseudo-
Hermitian manifold) [3].

The Tanaka-Webster connection ¥ (or the pseudo-Hermitian connection)
([16], [18]) on a contact strongly pseudo-convex pseudo-Hermitian manifold M
is defined by

VxY = VxY +n(X)eY + (Vxn)(Y)E - n(Y)VxE
for all X,Y € x(M). By the use of (2.3), V can be rewritten as
VxY = VxY +n(X)eY +n(Y)(0X + phX) — g(pX + ohX,Y)E.  (2.5)
From (2.5), the torsion of the Tanaka-Webster connection vV is
T(X,Y) = 29(X,Y)é +n(Y)phX — n(X)phY. (2.6)

If M is a Sasakian manifold, since h = 0, then the equations (2.5) and (2.6)
turn into

VxY = VxY +n(X)eY +n(Y)pX — g(¢X, Y)E,

T(X,Y) = 2(X. gY)E, @7

respectively.

3 SLANT CURVES IN CONTACT
PSEUDO-HERMITIAN GEOMETRY

Let M = {M,p,&,n,g} be a contact metric 3-manifold and v : I — M a curve
parametrized by arc-length in M. The Frenet frame field {T, N, B} along v for
the pseudo-Hermitian connection V can be defined by

VT = RN,
VrN = —RT +7B, (3.1)
VrB = —-7N,
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where K = ’ @TTH is the pseudo-Hermitian curvature of v and T its pseudo-

Hermitian torsion [8]. Similar to the general curve theory, a curve, whose
pseudo-Hermitian curvature and pseudo-Hermitian torsion are non-zero con-
stants, is called a pseudo-Hermitian heliz. Curves with constant non-zero pseudo-
Hermitian curvature and zero pseudo-Hermitian torsion are called pseudo-Hermitian
circles. Pseudo-Hermitian geodesics are curves whose pseudo-Hermitian curva-
ture and pseudo-Hermitian torsion are zero [8].

Let v : I — M be a Frenet curve parametrized by arc-length parameter s in
a contact metric 3-manifold M. The contact angle a(s) is a function defined by
cos[a(s)] = g(T'(s),€). If the contact angle «(s) is a constant, then ~y is called
a slant curve [9]. Slant curves with contact angle 7/2 are traditionally called
Legendre curves [3].

Throughout the present paper, we assume that all curves are non-geodesic
Frenet curves, that is, K # 0.

In [8], Cho and Lee proved the following three propositions:

Proposition 3.1. [§ A curve v for V is a slant curve if and only if it satisfies
n(N) = 0.
Proposition 3.2. [8] Let v be a slant curve for V in a 3-dimensional contact

metric manifold M. Then the ratio of T and k is a constant.

Note that
= cot ay, (3.2)

— ™I

where « is the contact angle of v [14].

Proposition 3.3. [8] If a curve in a 3-dimensional contact metric manifold for
Tanaka-Webster connection V is a Legendre curve, then T = 0.

In [14], the present author and Giiveng showed that the converse statement
of the above proposition is also true. They gave the following result:

Corollary 3.4. [14] Let v be a slant curve for Tanaka-Webster connection v
with contact angle o in a 3-dimensional contact metric manifold M. Then ~
is a Legendre curve if and only if 7T =0.

4 PSEUDO-HERMITIAN MEAN CURVATURE
VECTOR FIELD

The pseudo-Hermitian mean curvature vector field H of a curve v in a 3-
dimensional contact metric manifold is defined by

H =V;T =%N, (4.1)
(see [12]). From (4.1), it is easy to see that

VrH = —R*T +#'N 4+ #7B, (4.2)
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VtH =#'N + #7B, (4.3)
where H is the pseudo-Hermitian mean curvature vector field of ~ [12].

Definition 4.1. Let H be the mean curvature vector field of a curve 7 in a
3-dimensional contact metric manifold M. The mean curvature vector field H
is said to be pseudo-Hermitian C-parallel if VyH = . The vector field H
is said to be pseudo Hermitian C-proper mean curvature vector field if AH =
A§. Similarly, H is said to be pseudo-Hermitian C-parallel vector field in the
normal bundle if V%H = X, and H is said to be pseudo-Hermitian C-proper

~1 ~
mean curvature vector field in the normal bundle if A H = )\, where A is a
differentiable function along the curve.

Lemma 4.2. [14]Let v be a curve in a 3-dimensional contact metric manifold
M. Then

VeVeVeT = —38R'T + (R — 7% — #72)N + (2R'7 4+ #7)B, (4.4)
VEVEVAT = (R — R72)N + (2R'7 + #7')B (4.5)
and R R
AH = —VVrVrT,
~ 1 ~ ~ ~ ~
AN H=-VVsVrT.

Using Lemma 4.2, we have the following theorem:

(4.6)

Theorem 4.3. A slant curve v in a 3-dimensional contact metric manifold M
has pseudo-Hermitian C-parallel mean curvature vector field if and only if it is
a pseudo-Hermitian helix satisfying

~ - A sin o
K=Fy—-Acosay and T=F——,
+ 0 qz\/—)\ COoS (g

where A\ cos ag < 0.

Proof. Assume that a slant curve v has pseudo-Hermitian C-parallel mean cur-
vature vector field. Then from (4.2), the condition Vo H = X gives

—RT + R N+ /7B = \E. (4.7)

Since v is a slant curve we can write
& = cos T + sinaB. (4.8)

So using (4.7) and (4.8) we can write
~R2T + &' N +77B = X (cos T + sinapB) . (4.9)

Taking the inner product of (4.9) with N and using n(N) = 0 we find ¥’ = 0,
which implies that % is a constant. Hence from the equation (4.9), it follows

R = F/— i g in & — g Asinag
that K = Fv/—Acosag. Since = cot ag we obtain T F o an where
Acosag < 0.

The converse statement is trivial. O
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Theorem 4.4. A slant curve v in a 3-dimensional contact metric manifold
M has pseudo-Hermitian C-parallel mean curvature vector field in the normal
bundle if and only if it is a pseudo-Hermitian Legendre circle.

Proof. Assume that a slant curve  has pseudo-Hermitian C-parallel mean
curvature vector field in the normal bundle. Then from (4.2), the condition
V+EH = X gives

®'N +"7B = X (cos apT + sinagB) . (4.10)
So we have
R =0, (4.11)
Acosag =0, (4.12)
KT = Asinayp. (4.13)

Then ¥ is a constant. From (4.12), if cosag = 0, then oy = /2. So it is
a Legendre curve. Then from Proposition 3.4, 7 = 0, which implies v is a
pseudo-Hermitian Legendre circle. Moreover, from (4.13) we have A = 0.

The converse statement is trivial. O

Theorem 4.5. There does not exist non-geodesic slant curve in a 3-dimensional
contact metric manifold M with pseudo Hermitian C-proper mean curvature.

Proof. Assume that v is a non-geodesic slant curve with contact angle ap and has
pseudo Hermitian C-proper mean curvature field. Then by definition, AH = A¢.
Using (4.6) and (4.8), we get

3RR'T — (R — R —RTY)N — (2R'T 4+ R7')B

= A(cos apT + sinagB) . (4.14)

Hence we have
3KK = Acosayg,
R —rP-RT2 =0,

2R'T + RT = —Asinag.
So using £ = cot ag, we find A = 0. Then using Theorem 4.4. in [14], we find
k = 0. Since 7 is not a geodesic, it can not have pseudo Hermitian C-proper

mean curvature.
This completes the proof. O

)

Theorem 4.6. A slant curve v in a 3-dimensional contact metric manifold
M has pseudo-Hermitian C-proper mean curvature field in the mormal bundle
if and only if either it is a Legendre curve with pseudo-Hermitian curvature
k(s) = as + b, where a and b are real constants or it is a pseudo-Hermitian
Legendre circle.
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Proof. Assume that 7y is a non-geodesic slant curve with contact angle ay and has
pseudo Hermitian C-proper mean curvature vector field in the normal bundle.

1~
Then by definition, A~ H = X{. Using (4.6) and (4.8), we get
—(R" = RT*)N — (2R'T + ®7')B = A (cos agT + sinagB) .

Then we have

R’ — 772 =0, (4.15)
—(2R'T + K7') = Asinay, (4.16)
Acosag = 0. (4.17)

From (4.17), if cosag = 0, then ag = 7/2. So it is a Legendre curve. Then
from Proposition 3.4, 7 = 0. Thus the equations (4.15) and (4.16) give us
A = 0. Then by Theorem 4.7 in [14], it follows that 7 is a Legendre curve with
pseudo-Hermitian curvature %(s) = as + b, where a and b are real constants. If
cosap # 0 and A = 0 then in view of Theorem 4.7 in [14], it follows that v is a
pseudo-Hermitian Legendre circle.

The converse statement is trivial. O
5 SLANT CURVES OF SASAKIAN HEISENBERG
GROUP WITH PSEUDO-HERMITIAN
CONNECTION

The Heisenberg group Hz can be viewed as R? equipped with Riemannian metric
g=dz’+dy* +nomn,
where (z,y, z) are standard coordinates in R? and
n =dz + ydr — xdy.

The 1-form n satisfies dn A = —Adxz A dy A dz. Hence n is a contact form.
In [10], Inoguchi obtained the Levi-Civita connection V of the metric g with
respect to the left-invariant orthonormal basis

0 0 0 0 0

el = —Y7,€6=—+Tr—,e3= .
Vo0 Ve Oy 0z 0z
He obtained
Ve,e1 =0, Veer=e3, Vee3=—e,
Vezel = —€s3, Vezeg = 0, v6263 = €1, (51)
ve3€1 = —€9, V6362 = €1, V63€3 =0.

We also have the Heisenberg brackets

[ela 62] = 2637 [627 63} = [63; 61] =0.
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Let ¢ be the (1,1)-tensor field defined by (e1) = e, ¢(e2) = —e; and
©(e3) = 0. Then using the linearity of ¢ and g we have

nles) =1, @*(X)=-X+n(X)es, g(¢X,pY)=g(X,Y)—n(X)nY).

We also have
dn(X,Y) = g(X, ¢Y)

for all X,Y € x(M). Thus for £ = e3, (¢,&,7,9) is a contact metric structure
and the Heisenberg group Hj is a Sasakian space form of constant holomorphic
sectional curvature —3 [10].

Now, let v : I — Hj be a slant curve with contact angle ag. Assume that
v is parametrized by arc length s and {T', N, B} denote the Frenet frame of ~.
Then we can write

T = sin ag cos Beq + sin ag sin Bes + cos agpes, (5.2)
where 8 = f3(s). Using (5.1) we have
VT = (—sinagsin 3 (8" — 2cosap)) e1

+ (sinag cos B (8" — 2 cos ay)) ea. (5.3)
On the other hand by the use of (5.2) it follows that

@I = —sin o sin Beq + sin ag cos Pes. (5.4)
By the use of (2.7) we find
VoT = —f sin ag sin Ber + 3’ sin ag cos Bes. (5.5)
Since VT = &N, the equation (5.5) gives us
k= |B'| sin ap. (5.6)
Hence the principal normal vector field N of v can be written as
N = sgn(8') (—sin Be; + cos fes) .
Since B =T x N, we find
B = sgn(B') (— cos ag cos Be; — cos o sin Bea + sin ages) .
Then it is easy to see that
B’ = sgn(B") (8 cos ag — cos 2ay) (sin Be; — cos Beq),

which gives us
7 = ' cos g — cos 2ag. (5.7)
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Now assume that 7 = 0. Then from Proposition 3.4, v is a Legendre curve.
Using (5.7), we obtain
cos 2y

B(s) =

where c¢ is a real constant. Hence from (5.6), % is a constant.

Let v(s) = (x(s),y(s), 2(s)). To find the explicit equations, we should inte-

dy _
grate the system 5 =T. Then

dx . cos 2ay
—— = s1n g CoS s+c),
ds COS (g

dy . . cos2ag
— = SIn (g SIn s+c),
ds COoS Qg

dz 1 . . cos 2ag cos 2ay
=, = Cos o + 5 sinap | sin s+c | z(s) — cos s+ecly(s)).
s

CoS (g Cos

+c,
COs Qg

So using the method given in [4], the integration of above system gives the
following example:

Ezxample 5.1. Let v : I — Hj be a curve with the following parametric equations.

cosaqg . . cos2ay
x(s) = ——— sin o sin( s+c)+dy,
cos 2ag €os (v
cosaqg . cos 2a
y(s) = — sin ayg cos( s+ c¢)+ da,
cos 2ay CoS
cosqg . cosqg . cos 2ay
z(s) = (cosap+ sinfag | s —dy sin ag cos(———s + ¢)
cos 2ay cos 2ay CoS
cosqyg . ., cos2ap
—ds sin avg sin( s+ c)+ds.
cos 2ay COS (g

Then 7 is a pseudo-Hermitian Legendre circle with pseudo-Hermitian curvature

~

cos 2a

cos o sin ag, where ¢, dy, ds and dz are some real constants.

Now assume that 7 # 0 and % is a constant. Then from (5.6), 5’ is a constant.
Then we can write 3(s) = as + b, where a and b are real constants. By the use
of equation (5.7), we find T = a cos ap — cos 2ag. Hence T is a constant. Similar
to the method using in previous example, let vy(s) = (x(s),y(s), 2(s)). To find
the explicit equations, we should integrate the system % = T. Then

ds
dx
-_— = i b
. = sinao cos (as+b),
dy
- = i i b
75 — Sinaosin (as+b),

d 1
d—z = cosag + 5 sin g (sin (as + b) z(s) — cos (as + b) y(s)) .
s

Similarly, using the method given in [4], the integration of above system gives
the following example:
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Example 5.2. Let v : I — Hj be a curve with the following parametric equations.

1
x(s) = o sin ag sin(as + b) + ¢y,

1
y(s) = ——sinag cos(as + b) + cq,
a

1
z(s) = (cos ag + —sin? cm) s— Zsin ap cos(as + b)
a a

C2 . .
——sinagsin(as + b) + cs.
a

Then ~ is a pseudo-Hermitian slant helix with pseudo-Hermitian curvature K =
|a] sin g and pseudo-Hermitian torsion T = a cos ag — cos 2aq , where a, b, ¢1, co
and c3 are some real constants such that a # €529

cos ap
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