

On Slant Curves with Pseudo-Hermitian C -parallel Mean Curvature Vector Fields

Cihan Özgür

Cihan Özgür: Balıkesir University, Department of Mathematics, 10145, Çağış, Balıkesir, Turkey, e-mail: cozgur@balikesir.edu.tr

Abstract. We study pseudo-Hermitian C -parallel and C -proper slant curves in contact metric 3-manifolds. As an application, we give two examples of pseudo-Hermitian Legendre circle and pseudo-Hermitian slant helix in Sasakian Heisenberg group.

Keywords. C -parallel mean curvature vector · slant curve · Heisenberg group.

MSC 2010 Classification. Primary: 53C25; Secondary: 53A05 · 53C40.

1 INTRODUCTION

In [7], Chen defined biharmonic submanifold as a Riemannian submanifold with vanishing Laplacian of mean curvature vector field ΔH . Curves in a Euclidean space satisfying the condition $\Delta^\perp H = \lambda H$ were classified in [2], by Barros and Garay, where Δ^\perp denotes the Laplacian of the curve in the normal bundle and λ is a real valued function. In the real space form, the classification of curves satisfying $\Delta H = \lambda H$ and $\Delta^\perp H = \lambda H$ were given in [1], by Arroyo, Barros and Garay.

A curve in a contact metric manifold is said to be *slant* [9], if its tangent vector field has a constant angle with the Reeb vector field. In particular, if the contact angle is equal to $\frac{\pi}{2}$, then the curve is called a *Legendre curve*. In [8], Cho and Lee studied slant curves in pseudo-Hermitian contact 3-manifolds. Legendre curves with pseudo-Hermitian parallel mean curvature vector field, pseudo-Hermitian proper mean curvature vector field and pseudo-Hermitian proper mean curvature vector field in the normal bundle in contact pseudo-Hermitian 3-manifolds were studied by Lee in [12]. In [14], the present author and Güvenç studied slant curves with pseudo-Hermitian parallel mean curvature vector field, pseudo-Hermitian proper mean curvature vector field and pseudo-Hermitian proper mean curvature vector field in the normal bundle in contact pseudo-Hermitian 3-manifolds. The notions of C -parallel and C -proper

curves in the tangent and normal bundles were introduced by Lee, Suh and Lee in [13]. A curve in an almost contact metric manifold is defined to be *C-parallel* if $\nabla_T H = \lambda \xi$, *C-proper* if $\Delta H = \lambda \xi$, *C-parallel in the normal bundle* if $\nabla_T^\perp H = \lambda \xi$, *C-proper in the normal bundle* if $\Delta^\perp H = \lambda \xi$, where T is the unit tangent vector field of the curve and λ is a differentiable function along the curve. In [13], Lee, Suh and Lee studied *C-parallel* and *C-proper* slant curves in Sasakian 3-manifolds. *C-parallel* and *C-proper* slant curves in trans-Sasakian manifolds were studied in [15], by Güvenç and the present author. On the other hand, slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry were studied by Călin and Crasmareanu in [6]. Slant curves in normal almost contact geometry were studied in [5].

Motivated by the above studies, in the present paper, we study pseudo-Hermitian *C-parallel* and *C-proper* slant curves in contact metric 3-manifolds. We give two examples of pseudo-Hermitian Legendre circle and pseudo-Hermitian slant helix in Sasakian Heisenberg group.

2 PRELIMINARIES

Let M be a $(2n+1)$ -dimensional manifold. M is called a *contact manifold* [3] if there exists a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ everywhere on M . Given a contact form η , there exists a unique vector field ξ , the *characteristic vector field*, which satisfies $\eta(\xi) = 1$ and $d\eta(X, \xi) = 0$ for any vector field X on M . There exists an associated Riemannian metric g and a $(1, 1)$ -type tensor field φ satisfying

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(X) = g(X, \xi), \quad d\eta(X, Y) = g(X, \varphi Y), \quad (2.1)$$

for all $X, Y \in \chi(M)$. From (2.1), it is easy to see that

$$\varphi\xi = 0, \quad \eta \circ \varphi = 0, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y). \quad (2.2)$$

A Riemannian manifold equipped with the structure tensors (φ, ξ, η, g) satisfying (2.1) is called a *contact metric manifold*. It is denoted by $M = \{M, \varphi, \xi, \eta, g\}$. The operator h is defined by $h = \frac{1}{2}L_\xi\varphi$, where L_ξ is the Lie differentiation operator in the characteristic direction ξ . From the definition of h , it is easy to see that h is symmetric and satisfies the following equations (see [3], page 67):

$$h\xi = 0, \quad h\varphi = -\varphi h, \quad \nabla_X \xi = -\varphi X - \varphi h X, \quad (2.3)$$

where ∇ denotes the Levi-Civita connection.

For a $(2n+1)$ -dimensional contact metric manifold $M = \{M, \varphi, \xi, \eta, g\}$, the almost complex structure J on $M \times \mathbb{R}$ is defined by

$$J(X, f \frac{d}{dt}) = (\varphi X - f\xi, \eta(X) \frac{d}{dt}), \quad (2.4)$$

where X is a vector field tangent to M , t is the coordinate function of \mathbb{R} and f is a C^∞ function on $M \times \mathbb{R}$. If J is integrable then the contact metric manifold M is called a *Sasakian manifold* [3].

For a $(2n + 1)$ -dimensional contact metric manifold $M = \{M, \varphi, \xi, \eta, g\}$ provides a splitting of the tangent bundle

$$TM = \text{Ker}(\varphi) \oplus \text{Im}(\varphi)$$

and the restriction $J = \varphi|_D$ defines an almost complex structure on $D = \text{Im}(\varphi)$. There is a well-known concept of almost *CR*-structure as follows: Let M be a $(2n + s)$ -dimensional smooth manifold. Let \mathcal{D} be a smooth distribution on M of real dimension $2n$ and J a $(1, 1)$ -tensor field on M such that

$$J^2 X = -X, \quad X \in \mathcal{D}.$$

Then (\mathcal{D}, J) is called almost complex distribution (or an almost *CR*-structure). Then M is an *almost CR-manifold* (or a *contact strongly pseudo-convex pseudo-Hermitian manifold*) [3].

The Tanaka-Webster connection $\hat{\nabla}$ (or the pseudo-Hermitian connection) ([16], [18]) on a contact strongly pseudo-convex pseudo-Hermitian manifold M is defined by

$$\hat{\nabla}_X Y = \nabla_X Y + \eta(X)\varphi Y + (\nabla_X \eta)(Y)\xi - \eta(Y)\nabla_X \xi$$

for all $X, Y \in \chi(M)$. By the use of (2.3), $\hat{\nabla}$ can be rewritten as

$$\hat{\nabla}_X Y = \nabla_X Y + \eta(X)\varphi Y + \eta(Y)(\varphi X + \varphi hX) - g(\varphi X + \varphi hX, Y)\xi. \quad (2.5)$$

From (2.5), the torsion of the Tanaka-Webster connection $\hat{\nabla}$ is

$$\hat{T}(X, Y) = 2g(X, \varphi Y)\xi + \eta(Y)\varphi hX - \eta(X)\varphi hY. \quad (2.6)$$

If M is a Sasakian manifold, since $h = 0$, then the equations (2.5) and (2.6) turn into

$$\begin{aligned} \hat{\nabla}_X Y &= \nabla_X Y + \eta(X)\varphi Y + \eta(Y)\varphi X - g(\varphi X, Y)\xi, \\ \hat{T}(X, Y) &= 2g(X, \varphi Y)\xi, \end{aligned} \quad (2.7)$$

respectively.

3 SLANT CURVES IN CONTACT PSEUDO-HERMITIAN GEOMETRY

Let $M = \{M, \varphi, \xi, \eta, g\}$ be a contact metric 3-manifold and $\gamma : I \rightarrow M$ a curve parametrized by arc-length in M . The Frenet frame field $\{T, N, B\}$ along γ for the pseudo-Hermitian connection $\hat{\nabla}$ can be defined by

$$\begin{aligned} \hat{\nabla}_T T &= \hat{\kappa}N, \\ \hat{\nabla}_T N &= -\hat{\kappa}T + \hat{\tau}B, \\ \hat{\nabla}_T B &= -\hat{\tau}N, \end{aligned} \quad (3.1)$$

where $\hat{\kappa} = \|\hat{\nabla}_T T\|$ is the *pseudo-Hermitian curvature* of γ and $\hat{\tau}$ its *pseudo-Hermitian torsion* [8]. Similar to the general curve theory, a curve, whose pseudo-Hermitian curvature and pseudo-Hermitian torsion are non-zero constants, is called a *pseudo-Hermitian helix*. Curves with constant non-zero pseudo-Hermitian curvature and zero pseudo-Hermitian torsion are called *pseudo-Hermitian circles*. *Pseudo-Hermitian geodesics* are curves whose pseudo-Hermitian curvature and pseudo-Hermitian torsion are zero [8].

Let $\gamma : I \rightarrow M$ be a Frenet curve parametrized by arc-length parameter s in a contact metric 3-manifold M . The contact angle $\alpha(s)$ is a function defined by $\cos[\alpha(s)] = g(T(s), \xi)$. If the contact angle $\alpha(s)$ is a constant, then γ is called a *slant curve* [9]. Slant curves with contact angle $\pi/2$ are traditionally called *Legendre curves* [3].

Throughout the present paper, we assume that all curves are non-geodesic Frenet curves, that is, $\hat{\kappa} \neq 0$.

In [8], Cho and Lee proved the following three propositions:

Proposition 3.1. [8] *A curve γ for $\hat{\nabla}$ is a slant curve if and only if it satisfies $\eta(N) = 0$.*

Proposition 3.2. [8] *Let γ be a slant curve for $\hat{\nabla}$ in a 3-dimensional contact metric manifold M . Then the ratio of $\hat{\tau}$ and $\hat{\kappa}$ is a constant.*

Note that

$$\frac{\hat{\tau}}{\hat{\kappa}} = \cot \alpha_0, \quad (3.2)$$

where α_0 is the contact angle of γ [14].

Proposition 3.3. [8] *If a curve in a 3-dimensional contact metric manifold for Tanaka-Webster connection $\hat{\nabla}$ is a Legendre curve, then $\hat{\tau} = 0$.*

In [14], the present author and Güvenç showed that the converse statement of the above proposition is also true. They gave the following result:

Corollary 3.4. [14] *Let γ be a slant curve for Tanaka-Webster connection $\hat{\nabla}$ with contact angle α_0 in a 3-dimensional contact metric manifold M . Then γ is a Legendre curve if and only if $\hat{\tau} = 0$.*

4 PSEUDO-HERMITIAN MEAN CURVATURE VECTOR FIELD

The *pseudo-Hermitian mean curvature vector field* \hat{H} of a curve γ in a 3-dimensional contact metric manifold is defined by

$$\hat{H} = \hat{\nabla}_T T = \hat{\kappa} N, \quad (4.1)$$

(see [12]). From (4.1), it is easy to see that

$$\hat{\nabla}_T \hat{H} = -\hat{\kappa}^2 T + \hat{\kappa}' N + \hat{\kappa} \hat{\tau} B, \quad (4.2)$$

$$\hat{\nabla}_T^\perp \hat{H} = \hat{\kappa}' N + \hat{\kappa} \hat{\tau} B, \quad (4.3)$$

where \hat{H} is the pseudo-Hermitian mean curvature vector field of γ [12].

Definition 4.1. Let H be the mean curvature vector field of a curve γ in a 3-dimensional contact metric manifold M . The mean curvature vector field H is said to be *pseudo-Hermitian C-parallel* if $\hat{\nabla}_T \hat{H} = \lambda \xi$. The vector field H is said to be *pseudo Hermitian C-proper mean curvature vector field* if $\hat{\Delta} \hat{H} = \lambda \xi$. Similarly, H is said to be *pseudo-Hermitian C-parallel vector field in the normal bundle* if $\hat{\nabla}_T^\perp \hat{H} = \lambda \xi$, and H is said to be *pseudo-Hermitian C-proper mean curvature vector field in the normal bundle* if $\hat{\Delta}^\perp \hat{H} = \lambda \xi$, where λ is a differentiable function along the curve.

Lemma 4.2. [14] Let γ be a curve in a 3-dimensional contact metric manifold M . Then

$$\hat{\nabla}_T \hat{\nabla}_T \hat{\nabla}_T T = -3\hat{\kappa} \hat{\kappa}' T + (\hat{\kappa}'' - \hat{\kappa}^3 - \hat{\kappa} \hat{\tau}^2) N + (2\hat{\kappa}' \hat{\tau} + \hat{\kappa} \hat{\tau}') B, \quad (4.4)$$

$$\hat{\nabla}_T^\perp \hat{\nabla}_T^\perp \hat{\nabla}_T^\perp T = (\hat{\kappa}'' - \hat{\kappa} \hat{\tau}^2) N + (2\hat{\kappa}' \hat{\tau} + \hat{\kappa} \hat{\tau}') B \quad (4.5)$$

and

$$\begin{aligned} \hat{\Delta} \hat{H} &= -\hat{\nabla}_T \hat{\nabla}_T \hat{\nabla}_T T, \\ \hat{\Delta}^\perp \hat{H} &= -\hat{\nabla}_T^\perp \hat{\nabla}_T^\perp \hat{\nabla}_T^\perp T. \end{aligned} \quad (4.6)$$

Using Lemma 4.2, we have the following theorem:

Theorem 4.3. A slant curve γ in a 3-dimensional contact metric manifold M has pseudo-Hermitian C-parallel mean curvature vector field if and only if it is a pseudo-Hermitian helix satisfying

$$\hat{\kappa} = \mp \sqrt{-\lambda \cos \alpha_0} \quad \text{and} \quad \hat{\tau} = \mp \frac{\lambda \sin \alpha_0}{\sqrt{-\lambda \cos \alpha_0}},$$

where $\lambda \cos \alpha_0 < 0$.

Proof. Assume that a slant curve γ has pseudo-Hermitian C-parallel mean curvature vector field. Then from (4.2), the condition $\hat{\nabla}_T \hat{H} = \lambda \xi$ gives

$$-\hat{\kappa}^2 T + \hat{\kappa}' N + \hat{\kappa} \hat{\tau} B = \lambda \xi. \quad (4.7)$$

Since γ is a slant curve we can write

$$\xi = \cos \alpha_0 T + \sin \alpha_0 B. \quad (4.8)$$

So using (4.7) and (4.8) we can write

$$-\hat{\kappa}^2 T + \hat{\kappa}' N + \hat{\kappa} \hat{\tau} B = \lambda (\cos \alpha_0 T + \sin \alpha_0 B). \quad (4.9)$$

Taking the inner product of (4.9) with N and using $\eta(N) = 0$ we find $\hat{\kappa}' = 0$, which implies that $\hat{\kappa}$ is a constant. Hence from the equation (4.9), it follows that $\hat{\kappa} = \mp \sqrt{-\lambda \cos \alpha_0}$. Since $\frac{\hat{\tau}}{\hat{\kappa}} = \cot \alpha_0$ we obtain $\hat{\tau} = \mp \frac{\lambda \sin \alpha_0}{\sqrt{-\lambda \cos \alpha_0}}$, where $\lambda \cos \alpha_0 < 0$.

The converse statement is trivial. \square

Theorem 4.4. *A slant curve γ in a 3-dimensional contact metric manifold M has pseudo-Hermitian C -parallel mean curvature vector field in the normal bundle if and only if it is a pseudo-Hermitian Legendre circle.*

Proof. Assume that a slant curve γ has pseudo-Hermitian C -parallel mean curvature vector field in the normal bundle. Then from (4.2), the condition $\hat{\nabla}_T^\perp \hat{H} = \lambda \xi$ gives

$$\hat{\kappa}' N + \hat{\kappa} \hat{\tau} B = \lambda (\cos \alpha_0 T + \sin \alpha_0 B). \quad (4.10)$$

So we have

$$\hat{\kappa}' = 0, \quad (4.11)$$

$$\lambda \cos \alpha_0 = 0, \quad (4.12)$$

$$\hat{\kappa} \hat{\tau} = \lambda \sin \alpha_0. \quad (4.13)$$

Then $\hat{\kappa}$ is a constant. From (4.12), if $\cos \alpha_0 = 0$, then $\alpha_0 = \pi/2$. So it is a Legendre curve. Then from Proposition 3.4, $\hat{\tau} = 0$, which implies γ is a pseudo-Hermitian Legendre circle. Moreover, from (4.13) we have $\lambda = 0$.

The converse statement is trivial. \square

Theorem 4.5. *There does not exist non-geodesic slant curve in a 3-dimensional contact metric manifold M with pseudo Hermitian C -proper mean curvature.*

Proof. Assume that γ is a non-geodesic slant curve with contact angle α_0 and has pseudo Hermitian C -proper mean curvature field. Then by definition, $\hat{\Delta} \hat{H} = \lambda \xi$. Using (4.6) and (4.8), we get

$$\begin{aligned} 3\hat{\kappa}\hat{\kappa}'T - (\hat{\kappa}'' - \hat{\kappa}^3 - \hat{\kappa}\hat{\tau}^2)N - (2\hat{\kappa}'\hat{\tau} + \hat{\kappa}\hat{\tau}')B \\ = \lambda (\cos \alpha_0 T + \sin \alpha_0 B). \end{aligned} \quad (4.14)$$

Hence we have

$$\begin{aligned} 3\hat{\kappa}\hat{\kappa}' &= \lambda \cos \alpha_0, \\ \hat{\kappa}'' - \hat{\kappa}^3 - \hat{\kappa}\hat{\tau}^2 &= 0, \\ 2\hat{\kappa}'\hat{\tau} + \hat{\kappa}\hat{\tau}' &= -\lambda \sin \alpha_0. \end{aligned}$$

So using $\frac{\hat{\tau}}{\hat{\kappa}} = \cot \alpha_0$, we find $\lambda = 0$. Then using Theorem 4.4. in [14], we find $\hat{\kappa} = 0$. Since γ is not a geodesic, it can not have pseudo Hermitian C -proper mean curvature.

This completes the proof. \square

Theorem 4.6. *A slant curve γ in a 3-dimensional contact metric manifold M has pseudo-Hermitian C -proper mean curvature field in the normal bundle if and only if either it is a Legendre curve with pseudo-Hermitian curvature $\hat{\kappa}(s) = as + b$, where a and b are real constants or it is a pseudo-Hermitian Legendre circle.*

Proof. Assume that γ is a non-geodesic slant curve with contact angle α_0 and has pseudo Hermitian C -proper mean curvature vector field in the normal bundle. Then by definition, $\widehat{\Delta}^\perp \widehat{H} = \lambda \xi$. Using (4.6) and (4.8), we get

$$-(\widehat{\kappa}'' - \widehat{\kappa}\widehat{\tau}^2)N - (2\widehat{\kappa}'\widehat{\tau} + \widehat{\kappa}\widehat{\tau}')B = \lambda(\cos \alpha_0 T + \sin \alpha_0 B).$$

Then we have

$$\widehat{\kappa}'' - \widehat{\kappa}\widehat{\tau}^2 = 0, \quad (4.15)$$

$$-(2\widehat{\kappa}'\widehat{\tau} + \widehat{\kappa}\widehat{\tau}') = \lambda \sin \alpha_0, \quad (4.16)$$

$$\lambda \cos \alpha_0 = 0. \quad (4.17)$$

From (4.17), if $\cos \alpha_0 = 0$, then $\alpha_0 = \pi/2$. So it is a Legendre curve. Then from Proposition 3.4, $\widehat{\tau} = 0$. Thus the equations (4.15) and (4.16) give us $\lambda = 0$. Then by Theorem 4.7 in [14], it follows that γ is a Legendre curve with pseudo-Hermitian curvature $\widehat{\kappa}(s) = as + b$, where a and b are real constants. If $\cos \alpha_0 \neq 0$ and $\lambda = 0$ then in view of Theorem 4.7 in [14], it follows that γ is a pseudo-Hermitian Legendre circle.

The converse statement is trivial. \square

5 SLANT CURVES OF SASAKIAN HEISENBERG GROUP WITH PSEUDO-HERMITIAN CONNECTION

The Heisenberg group H_3 can be viewed as \mathbb{R}^3 equipped with Riemannian metric

$$g = dx^2 + dy^2 + \eta \otimes \eta,$$

where (x, y, z) are standard coordinates in \mathbb{R}^3 and

$$\eta = dz + ydx - xdy.$$

The 1-form η satisfies $d\eta \wedge \eta = -\lambda dx \wedge dy \wedge dz$. Hence η is a contact form. In [10], Inoguchi obtained the Levi-Civita connection ∇ of the metric g with respect to the left-invariant orthonormal basis

$$e_1 = \frac{\partial}{\partial x} - y \frac{\partial}{\partial z}, \quad e_2 = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \quad e_3 = \frac{\partial}{\partial z}.$$

He obtained

$$\begin{aligned} \nabla_{e_1} e_1 &= 0, & \nabla_{e_1} e_2 &= e_3, & \nabla_{e_1} e_3 &= -e_2, \\ \nabla_{e_2} e_1 &= -e_3, & \nabla_{e_2} e_2 &= 0, & \nabla_{e_2} e_3 &= e_1, \\ \nabla_{e_3} e_1 &= -e_2, & \nabla_{e_3} e_2 &= e_1, & \nabla_{e_3} e_3 &= 0. \end{aligned} \quad (5.1)$$

We also have the Heisenberg brackets

$$[e_1, e_2] = 2e_3, \quad [e_2, e_3] = [e_3, e_1] = 0.$$

Let φ be the $(1,1)$ -tensor field defined by $\varphi(e_1) = e_2$, $\varphi(e_2) = -e_1$ and $\varphi(e_3) = 0$. Then using the linearity of φ and g we have

$$\eta(e_3) = 1, \quad \varphi^2(X) = -X + \eta(X)e_3, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y).$$

We also have

$$d\eta(X, Y) = g(X, \varphi Y)$$

for all $X, Y \in \chi(M)$. Thus for $\xi = e_3$, (φ, ξ, η, g) is a contact metric structure and the Heisenberg group H_3 is a Sasakian space form of constant holomorphic sectional curvature -3 [10].

Now, let $\gamma : I \rightarrow H_3$ be a slant curve with contact angle α_0 . Assume that γ is parametrized by arc length s and $\{T, N, B\}$ denote the Frenet frame of γ . Then we can write

$$T = \sin \alpha_0 \cos \beta e_1 + \sin \alpha_0 \sin \beta e_2 + \cos \alpha_0 e_3, \quad (5.2)$$

where $\beta = \beta(s)$. Using (5.1) we have

$$\begin{aligned} \nabla_T T &= (-\sin \alpha_0 \sin \beta (\beta' - 2 \cos \alpha_0)) e_1 \\ &\quad + (\sin \alpha_0 \cos \beta (\beta' - 2 \cos \alpha_0)) e_2. \end{aligned} \quad (5.3)$$

On the other hand by the use of (5.2) it follows that

$$\varphi T = -\sin \alpha_0 \sin \beta e_1 + \sin \alpha_0 \cos \beta e_2. \quad (5.4)$$

By the use of (2.7) we find

$$\hat{\nabla}_T T = -\beta' \sin \alpha_0 \sin \beta e_1 + \beta' \sin \alpha_0 \cos \beta e_2. \quad (5.5)$$

Since $\hat{\nabla}_T T = \hat{\kappa} N$, the equation (5.5) gives us

$$\hat{\kappa} = |\beta'| \sin \alpha_0. \quad (5.6)$$

Hence the principal normal vector field N of γ can be written as

$$N = \operatorname{sgn}(\beta') (-\sin \beta e_1 + \cos \beta e_2).$$

Since $B = T \times N$, we find

$$B = \operatorname{sgn}(\beta') (-\cos \alpha_0 \cos \beta e_1 - \cos \alpha_0 \sin \beta e_2 + \sin \alpha_0 e_3).$$

Then it is easy to see that

$$B' = \operatorname{sgn}(\beta') (\beta' \cos \alpha_0 - \cos 2\alpha_0) (\sin \beta e_1 - \cos \beta e_2),$$

which gives us

$$\hat{\tau} = \beta' \cos \alpha_0 - \cos 2\alpha_0. \quad (5.7)$$

Now assume that $\hat{\tau} = 0$. Then from Proposition 3.4, γ is a Legendre curve. Using (5.7), we obtain

$$\beta(s) = \frac{\cos 2\alpha_0}{\cos \alpha_0} s + c,$$

where c is a real constant. Hence from (5.6), $\hat{\kappa}$ is a constant.

Let $\gamma(s) = (x(s), y(s), z(s))$. To find the explicit equations, we should integrate the system $\frac{d\gamma}{ds} = T$. Then

$$\begin{aligned} \frac{dx}{ds} &= \sin \alpha_0 \cos \left(\frac{\cos 2\alpha_0}{\cos \alpha_0} s + c \right), \\ \frac{dy}{ds} &= \sin \alpha_0 \sin \left(\frac{\cos 2\alpha_0}{\cos \alpha_0} s + c \right), \\ \frac{dz}{ds} &= \cos \alpha_0 + \frac{1}{2} \sin \alpha_0 \left(\sin \left(\frac{\cos 2\alpha_0}{\cos \alpha_0} s + c \right) x(s) - \cos \left(\frac{\cos 2\alpha_0}{\cos \alpha_0} s + c \right) y(s) \right). \end{aligned}$$

So using the method given in [4], the integration of above system gives the following example:

Example 5.1. Let $\gamma : I \rightarrow H_3$ be a curve with the following parametric equations.

$$\begin{aligned} x(s) &= \frac{\cos \alpha_0}{\cos 2\alpha_0} \sin \alpha_0 \sin \left(\frac{\cos 2\alpha_0}{\cos \alpha_0} s + c \right) + d_1, \\ y(s) &= -\frac{\cos \alpha_0}{\cos 2\alpha_0} \sin \alpha_0 \cos \left(\frac{\cos 2\alpha_0}{\cos \alpha_0} s + c \right) + d_2, \\ z(s) &= \left(\cos \alpha_0 + \frac{\cos \alpha_0}{\cos 2\alpha_0} \sin^2 \alpha_0 \right) s - d_1 \frac{\cos \alpha_0}{\cos 2\alpha_0} \sin \alpha_0 \cos \left(\frac{\cos 2\alpha_0}{\cos \alpha_0} s + c \right) \\ &\quad - d_2 \frac{\cos \alpha_0}{\cos 2\alpha_0} \sin \alpha_0 \sin \left(\frac{\cos 2\alpha_0}{\cos \alpha_0} s + c \right) + d_3. \end{aligned}$$

Then γ is a pseudo-Hermitian Legendre circle with *pseudo-Hermitian curvature* $\hat{\kappa} = \left| \frac{\cos 2\alpha_0}{\cos \alpha_0} \right| \sin \alpha_0$, where c, d_1, d_2 and d_3 are some real constants.

Now assume that $\hat{\tau} \neq 0$ and $\hat{\kappa}$ is a constant. Then from (5.6), β' is a constant. Then we can write $\beta(s) = as + b$, where a and b are real constants. By the use of equation (5.7), we find $\hat{\tau} = a \cos \alpha_0 - \cos 2\alpha_0$. Hence $\hat{\tau}$ is a constant. Similar to the method using in previous example, let $\gamma(s) = (x(s), y(s), z(s))$. To find the explicit equations, we should integrate the system $\frac{d\gamma}{ds} = T$. Then

$$\begin{aligned} \frac{dx}{ds} &= \sin \alpha_0 \cos(as + b), \\ \frac{dy}{ds} &= \sin \alpha_0 \sin(as + b), \\ \frac{dz}{ds} &= \cos \alpha_0 + \frac{1}{2} \sin \alpha_0 (\sin(as + b) x(s) - \cos(as + b) y(s)). \end{aligned}$$

Similarly, using the method given in [4], the integration of above system gives the following example:

Example 5.2. Let $\gamma : I \rightarrow H_3$ be a curve with the following parametric equations.

$$x(s) = \frac{1}{a} \sin \alpha_0 \sin(as + b) + c_1,$$

$$y(s) = -\frac{1}{a} \sin \alpha_0 \cos(as + b) + c_2,$$

$$\begin{aligned} z(s) = & \left(\cos \alpha_0 + \frac{1}{a} \sin^2 \alpha_0 \right) s - \frac{c_1}{a} \sin \alpha_0 \cos(as + b) \\ & - \frac{c_2}{a} \sin \alpha_0 \sin(as + b) + c_3. \end{aligned}$$

Then γ is a pseudo-Hermitian slant helix with *pseudo-Hermitian curvature* $\widehat{\kappa} = |a| \sin \alpha_0$ and *pseudo-Hermitian torsion* $\widehat{\tau} = a \cos \alpha_0 - \cos 2\alpha_0$, where a, b, c_1, c_2 and c_3 are some real constants such that $a \neq \frac{\cos 2\alpha_0}{\cos \alpha_0}$.

REFERENCES

- [1] Arroyo, J., Barros, M., Garay, O. J., *A characterisation of helices and Cornu spirals in real space forms*, Bull. Austral. Math. Soc. 56 (1997), 37–49.
- [2] Barros, M., Garay, O. J., *On submanifolds with harmonic mean curvature*, Proc. Amer. Math. Soc. 123 (1995), 2545–2549.
- [3] Blair, D. E., *Riemannian geometry of contact and symplectic manifolds*, second edition. Progress in Mathematics, 203. Birkhäuser Boston, Inc., Boston, MA, 2010.
- [4] Caddeo, R., Oniciuc, C., Piu, P., *Explicit formulas for non-geodesic bi-harmonic curves of the Heisenberg group*, Rend. Sem. Mat. Univ. Politec. Torino 62 (2004), 265–277.
- [5] Călin, C., Crasmareanu, M., *Slant curves in 3-dimensional normal almost contact geometry*, *Mediterr. J. Math.* 10 (2013), 1067–1077.
- [6] Călin, C., Crasmareanu, M., *Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry*, *Czechoslovak Math. J.* 64(139) (2014), 945–960.
- [7] Chen, B.-Y., *Some open problems and conjectures on submanifolds of finite type*, *Soochow J. Math.* 17 (1991), 169–188.
- [8] Cho, J. T., Lee, J.-E., *Slant curves in contact pseudo-Hermitian 3-manifolds*, *Bull. Aust. Math. Soc.* 78 (2008), 383–396.
- [9] Cho, J. T., Inoguchi, J., Lee, J.-E., *On slant curves in Sasakian 3-manifolds*, *Bull. Austral. Math. Soc.* 74 (2006), 359–367.

- [10] Inoguchi, J., *Minimal surfaces in the 3-dimensional Heisenberg group*, Differ. Geom. Dyn. Syst. 10 (2008), 163–169.
- [11] Inoguchi, J., Lee, J.-E., *Slant curves in 3-dimensional almost contact metric geometry*, Int. Electron. J. Geom. 8 (2015), 106–146.
- [12] Lee, J.-E., *On Legendre curves in contact pseudo-Hermitian 3-manifolds*, Bull. Aust. Math. Soc. 81 (2010), 156–164.
- [13] Lee, J.-E., Suh, Y. J., Lee, H., *C-parallel mean curvature vector fields along slant curves in Sasakian 3-manifolds*, Kyungpook Math. J. 52 (2012), 49–59.
- [14] Özgür, C., Güvenç, Ş., *On some types of slant curves in contact pseudo-Hermitian 3-manifolds*, Ann. Polon. Math. 104 (2012), 217–228.
- [15] Güvenç, Ş., Özgür, C., *On slant curves in trans-Sasakian manifolds*, Rev. Un. Mat. Argentina 55 (2014), 81–100.
- [16] Tanaka, N., *On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections*, Japan. J. Math. (N.S.) 2 (1976), 131–190.
- [17] Tanno, S., *Variational problems on contact Riemannian manifolds*, Trans. Amer. Math. Soc. 314 (1989), 349–379.
- [18] Webster, S. M., *Pseudo-Hermitian structures on a real hypersurface*, J. Diff. Geom. 13 (1978), 25–41.