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Elif Özkara Canfes, Joeri Van der Veken
and Cornelia-Livia Bejan
Recieved: January 29, 2017
Accepted: July 17, 2017
DOI: 10.24064/iwts2016.2017.11

Abstract. We study pseudo-Hermitian C-parallel and C-proper slant curves
in contact metric 3-manifolds. As an application, we give two examples
of pseudo-Hermitian Legendre circle and pseudo-Hermitian slant helix in
Sasakian Heisenberg group.
Keywords. C-parallel mean curvature vector · slant curve · Heisenberg
group.
MSC 2010 Classification. Primary: 53C25; Secondary:53A05 · 53C40.

1 Introduction

In [7], Chen defined biharmonic submanifold as a Riemannian submanifold with
vanishing Laplacian of mean curvature vector field ∆H. Curves in a Euclidean
space satisfying the condition ∆⊥H = λH were classified in [2], by Barros and
Garay, where ∆⊥ denotes the Laplacian of the curve in the normal bundle and
λ is a real valued function. In the real space form, the classification of curves
satisfying ∆H = λH and ∆⊥H = λH were given in [1], by Arroyo, Barros and
Garay.

A curve in a contact metric manifold is said to be slant [9], if its tan-
gent vector field has a constant angle with the Reeb vector field. In partic-
ular, if the contact angle is equal to π

2 , then the curve is called a Legendre
curve. In [8], Cho and Lee studied slant curves in pseudo-Hermitian contact
3-manifolds. Legendre curves with pseudo-Hermitian parallel mean curvature
vector field, pseudo-Hermitian proper mean curvature vector field and pseudo-
Hermitian proper mean curvature vector field in the normal bundle in contact
pseudo-Hermitian 3-manifolds were studied by Lee in [12]. In [14], the present
author and Güvenç studied slant curves with pseudo-Hermitian parallel mean
curvature vector field, pseudo-Hermitian proper mean curvature vector field and
pseudo-Hermitian proper mean curvature vector field in the normal bundle in
contact pseudo-Hermitian 3-manifolds. The notions of C-parallel and C-proper
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curves in the tangent and normal bundles were introduced by Lee, Suh and
Lee in [13]. A curve in an almost contact metric manifold is defined to be
C-parallel if ∇TH = λξ, C-proper if ∆H = λξ, C-parallel in the normal bundle
if ∇⊥TH = λξ, C-proper in the normal bundle if ∆⊥H = λξ, where T is the
unit tangent vector field of the curve and λ is a differentiable function along the
curve. In [13], Lee, Suh and Lee studied C-parallel and C-proper slant curves in
Sasakian 3-manifolds. C-parallel and C-proper slant curves in trans-Sasakian
manifolds were studied in [15], by Güvenç and the present author. On the other
hand, slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry were
studied by Călin and Crasmareanu in [6]. Slant curves in normal almost contact
geometry were studied in [5].

Motivated by the above studies, in the present paper, we study pseudo-
Hermitian C-parallel and C-proper slant curves in contact metric 3-manifolds.
We give two examples of pseudo-Hermitian Legendre circle and pseudo-Hermitian
slant helix in Sasakian Heisenberg group.

2 Preliminaries

Let M be a (2n+1)-dimensional manifold. M is called a contact manifold [3] if
there exists a global 1-form η such that η ∧ (dη)n 6= 0 everywhere on M . Given
a contact form η, there exists a unique vector field ξ, the characteristic vector
field, which satisfies η(ξ) = 1 and dη(X, ξ) = 0 for any vector field X on M .
There exists an associated Riemannian metric g and a (1, 1)-type tensor field ϕ
satisfying

ϕ2X = −X + η(X)ξ, η(X) = g(X, ξ), dη(X,Y ) = g(X,ϕY ), (2.1)

for all X,Y ∈ χ(M). From (2.1), it is easy to see that

ϕξ = 0, η ◦ ϕ = 0, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ). (2.2)

A Riemannian manifold equipped with the structure tensors (ϕ, ξ, η, g) satis-
fying (2.1) is called a contact metric manifold. It is denoted byM = {M,ϕ, ξ, η, g}.
The operator h is defined by h = 1

2Lξϕ, where Lξ is the Lie differentiation op-
erator in the characteristic direction ξ. From the definition of h, it is easy to
see that h is symmetric and satisfies the following equations (see [3], page 67):

hξ = 0, hϕ = −ϕh, ∇Xξ = −ϕX − ϕhX, (2.3)

where ∇ denotes the Levi-Civita connection.
For a (2n+ 1)-dimensional contact metric manifold M = {M,ϕ, ξ, η, g}, the

almost complex structure J on M × R is defined by

J(X, f d
dt ) = (ϕX − fξ, η(X) ddt ), (2.4)

where X is a vector field tangent to M , t is the coordinate function of R and f
is a C∞ function on M ×R. If J is integrable then the contact metric manifold
M is called a Sasakian manifold [3].
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For a (2n + 1)-dimensional contact metric manifold M = {M,ϕ, ξ, η, g}
provides a splitting of the tangent bundle

TM = Ker(ϕ)⊕ Im(ϕ)

and the restriction J = ϕ |D defines an almost complex structure on D = Im(ϕ).
There is a well-known concept of almost CR-structure as follows: Let M be a
(2n + s)-dimensional smooth manifold. Let D be a smooth distribution on M
of real dimension 2n and J a (1, 1)-tensor field on M such that

J2X = −X, X ∈ D.

Then (D, J) is called almost complex distribution (or an almost CR-structure).
Then M is an almost CR-manifold (or a contact strongly pseudo-convex pseudo-
Hermitian manifold) [3].

The Tanaka-Webster connection ∇̂ (or the pseudo-Hermitian connection)
([16], [18]) on a contact strongly pseudo-convex pseudo-Hermitian manifold M
is defined by

∇̂XY = ∇XY + η(X)ϕY + (∇Xη)(Y )ξ − η(Y )∇Xξ

for all X,Y ∈ χ(M). By the use of (2.3), ∇̂ can be rewritten as

∇̂XY = ∇XY + η(X)ϕY + η(Y )(ϕX + ϕhX)− g(ϕX + ϕhX, Y )ξ. (2.5)

From (2.5), the torsion of the Tanaka-Webster connection ∇̂ is

T̂ (X,Y ) = 2g(X,ϕY )ξ + η(Y )ϕhX − η(X)ϕhY. (2.6)

If M is a Sasakian manifold, since h = 0, then the equations (2.5) and (2.6)
turn into

∇̂XY = ∇XY + η(X)ϕY + η(Y )ϕX − g(ϕX, Y )ξ,

T̂ (X,Y ) = 2g(X,ϕY )ξ,
(2.7)

respectively.

3 Slant curves in contact
pseudo-Hermitian geometry

Let M = {M,ϕ, ξ, η, g} be a contact metric 3-manifold and γ : I → M a curve
parametrized by arc-length in M . The Frenet frame field {T,N,B} along γ for

the pseudo-Hermitian connection ∇̂ can be defined by

∇̂TT = κ̂N,

∇̂TN = −κ̂T + τ̂B,

∇̂TB = −τ̂N,
(3.1)
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where κ̂ =
∥∥∥∇̂TT∥∥∥ is the pseudo-Hermitian curvature of γ and τ̂ its pseudo-

Hermitian torsion [8]. Similar to the general curve theory, a curve, whose
pseudo-Hermitian curvature and pseudo-Hermitian torsion are non-zero con-
stants, is called a pseudo-Hermitian helix. Curves with constant non-zero pseudo-
Hermitian curvature and zero pseudo-Hermitian torsion are called pseudo-Hermitian
circles. Pseudo-Hermitian geodesics are curves whose pseudo-Hermitian curva-
ture and pseudo-Hermitian torsion are zero [8].

Let γ : I →M be a Frenet curve parametrized by arc-length parameter s in
a contact metric 3-manifold M . The contact angle α(s) is a function defined by
cos[α(s)] = g(T (s), ξ). If the contact angle α(s) is a constant, then γ is called
a slant curve [9]. Slant curves with contact angle π/2 are traditionally called
Legendre curves [3].

Throughout the present paper, we assume that all curves are non-geodesic
Frenet curves, that is, κ̂ 6= 0.

In [8], Cho and Lee proved the following three propositions:

Proposition 3.1. [8] A curve γ for ∇̂ is a slant curve if and only if it satisfies
η(N) = 0.

Proposition 3.2. [8] Let γ be a slant curve for ∇̂ in a 3-dimensional contact
metric manifold M . Then the ratio of τ̂ and κ̂ is a constant.

Note that
τ̂

κ̂
= cotα0, (3.2)

where α0 is the contact angle of γ [14].

Proposition 3.3. [8] If a curve in a 3-dimensional contact metric manifold for

Tanaka-Webster connection ∇̂ is a Legendre curve, then τ̂ = 0.

In [14], the present author and Güvenç showed that the converse statement
of the above proposition is also true. They gave the following result:

Corollary 3.4. [14] Let γ be a slant curve for Tanaka-Webster connection ∇̂
with contact angle α0 in a 3-dimensional contact metric manifold M . Then γ
is a Legendre curve if and only if τ̂ = 0.

4 Pseudo-Hermitian mean curvature

vector field

The pseudo-Hermitian mean curvature vector field Ĥ of a curve γ in a 3-
dimensional contact metric manifold is defined by

Ĥ = ∇̂TT = κ̂N, (4.1)

(see [12]). From (4.1), it is easy to see that

∇̂T Ĥ = −κ̂2T + κ̂′N + κ̂τ̂B, (4.2)
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∇̂⊥T Ĥ = κ̂′N + κ̂τ̂B, (4.3)

where Ĥ is the pseudo-Hermitian mean curvature vector field of γ [12].

Definition 4.1. Let H be the mean curvature vector field of a curve γ in a
3-dimensional contact metric manifold M . The mean curvature vector field H
is said to be pseudo-Hermitian C-parallel if ∇̂T Ĥ = λξ. The vector field H
is said to be pseudo Hermitian C-proper mean curvature vector field if 4̂Ĥ =
λξ. Similarly, H is said to be pseudo-Hermitian C-parallel vector field in the
normal bundle if ∇̂⊥T Ĥ = λξ, and H is said to be pseudo-Hermitian C-proper

mean curvature vector field in the normal bundle if 4̂
⊥
Ĥ = λξ, where λ is a

differentiable function along the curve.

Lemma 4.2. [14]Let γ be a curve in a 3-dimensional contact metric manifold
M . Then

∇̂T ∇̂T ∇̂TT = −3κ̂κ̂′T + (κ̂′′ − κ̂3 − κ̂τ̂2)N + (2κ̂′τ̂ + κ̂τ̂ ′)B, (4.4)

∇̂⊥T ∇̂⊥T ∇̂⊥T T = (κ̂′′ − κ̂τ̂2)N + (2κ̂′τ̂ + κ̂τ̂ ′)B (4.5)

and
4̂Ĥ = −∇̂T ∇̂T ∇̂TT,
4̂
⊥
Ĥ = −∇̂⊥T ∇̂⊥T ∇̂⊥T T.

(4.6)

Using Lemma 4.2, we have the following theorem:

Theorem 4.3. A slant curve γ in a 3-dimensional contact metric manifold M
has pseudo-Hermitian C-parallel mean curvature vector field if and only if it is
a pseudo-Hermitian helix satisfying

κ̂ = ∓
√
−λ cosα0 and τ̂ = ∓ λ sinα0√

−λ cosα0

,

where λ cosα0 < 0.

Proof. Assume that a slant curve γ has pseudo-Hermitian C-parallel mean cur-
vature vector field. Then from (4.2), the condition ∇̂T Ĥ = λξ gives

−κ̂2T + κ̂′N + κ̂τ̂B = λξ. (4.7)

Since γ is a slant curve we can write

ξ = cosα0T + sinα0B. (4.8)

So using (4.7) and (4.8) we can write

−κ̂2T + κ̂′N + κ̂τ̂B = λ (cosα0T + sinα0B) . (4.9)

Taking the inner product of (4.9) with N and using η(N) = 0 we find κ̂′ = 0,
which implies that κ̂ is a constant. Hence from the equation (4.9), it follows
that κ̂ = ∓

√
−λ cosα0. Since τ̂

κ̂ = cotα0 we obtain τ̂ = ∓ λ sinα0√
−λ cosα0

, where

λ cosα0 < 0.
The converse statement is trivial.
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Theorem 4.4. A slant curve γ in a 3-dimensional contact metric manifold
M has pseudo-Hermitian C-parallel mean curvature vector field in the normal
bundle if and only if it is a pseudo-Hermitian Legendre circle.

Proof. Assume that a slant curve γ has pseudo-Hermitian C-parallel mean
curvature vector field in the normal bundle. Then from (4.2), the condition

∇̂⊥T Ĥ = λξ gives

κ̂′N + κ̂τ̂B = λ (cosα0T + sinα0B) . (4.10)

So we have
κ̂′ = 0, (4.11)

λ cosα0 = 0, (4.12)

κ̂τ̂ = λ sinα0. (4.13)

Then κ̂ is a constant. From (4.12), if cosα0 = 0, then α0 = π/2. So it is
a Legendre curve. Then from Proposition 3.4, τ̂ = 0, which implies γ is a
pseudo-Hermitian Legendre circle. Moreover, from (4.13) we have λ = 0.

The converse statement is trivial.

Theorem 4.5. There does not exist non-geodesic slant curve in a 3-dimensional
contact metric manifold M with pseudo Hermitian C-proper mean curvature.

Proof. Assume that γ is a non-geodesic slant curve with contact angle α0 and has
pseudo Hermitian C-proper mean curvature field. Then by definition, 4̂Ĥ = λξ.
Using (4.6) and (4.8), we get

3κ̂κ̂′T − (κ̂′′ − κ̂3 − κ̂τ̂2)N − (2κ̂′τ̂ + κ̂τ̂ ′)B

= λ (cosα0T + sinα0B) . (4.14)

Hence we have
3κ̂κ̂′ = λ cosα0,

κ̂′′ − κ̂3 − κ̂τ̂2 = 0,

2κ̂′τ̂ + κ̂τ̂ ′ = −λ sinα0.

So using τ̂
κ̂ = cotα0, we find λ = 0. Then using Theorem 4.4. in [14], we find

κ̂ = 0. Since γ is not a geodesic, it can not have pseudo Hermitian C-proper
mean curvature.

This completes the proof.

Theorem 4.6. A slant curve γ in a 3-dimensional contact metric manifold
M has pseudo-Hermitian C-proper mean curvature field in the normal bundle
if and only if either it is a Legendre curve with pseudo-Hermitian curvature
κ̂(s) = as + b, where a and b are real constants or it is a pseudo-Hermitian
Legendre circle.
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Proof. Assume that γ is a non-geodesic slant curve with contact angle α0 and has
pseudo Hermitian C-proper mean curvature vector field in the normal bundle.

Then by definition, 4̂
⊥
Ĥ = λξ. Using (4.6) and (4.8), we get

−(κ̂′′ − κ̂τ̂2)N − (2κ̂′τ̂ + κ̂τ̂ ′)B = λ (cosα0T + sinα0B) .

Then we have
κ̂′′ − κ̂τ̂2 = 0, (4.15)

−(2κ̂′τ̂ + κ̂τ̂ ′) = λ sinα0, (4.16)

λ cosα0 = 0. (4.17)

From (4.17), if cosα0 = 0, then α0 = π/2. So it is a Legendre curve. Then
from Proposition 3.4, τ̂ = 0. Thus the equations (4.15) and (4.16) give us
λ = 0. Then by Theorem 4.7 in [14], it follows that γ is a Legendre curve with
pseudo-Hermitian curvature κ̂(s) = as+ b, where a and b are real constants. If
cosα0 6= 0 and λ = 0 then in view of Theorem 4.7 in [14], it follows that γ is a
pseudo-Hermitian Legendre circle.

The converse statement is trivial.

5 Slant curves of Sasakian Heisenberg

Group with Pseudo-Hermitian

Connection

The Heisenberg group H3 can be viewed as R3 equipped with Riemannian metric

g = dx2 + dy2 + η ⊗ η,

where (x, y, z) are standard coordinates in R3 and

η = dz + ydx− xdy.

The 1-form η satisfies dη ∧ η = −λdx ∧ dy ∧ dz. Hence η is a contact form.
In [10], Inoguchi obtained the Levi-Civita connection ∇ of the metric g with
respect to the left-invariant orthonormal basis

e1 =
∂

∂x
− y ∂

∂z
, e2 =

∂

∂y
+ x

∂

∂z
, e3 =

∂

∂z
.

He obtained
∇e1e1 = 0, ∇e1e2 = e3, ∇e1e3 = −e2,
∇e2e1 = −e3, ∇e2e2 = 0, ∇e2e3 = e1,
∇e3e1 = −e2, ∇e3e2 = e1, ∇e3e3 = 0.

(5.1)

We also have the Heisenberg brackets

[e1, e2] = 2e3, [e2, e3] = [e3, e1] = 0.
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Let ϕ be the (1, 1)-tensor field defined by ϕ(e1) = e2, ϕ(e2) = −e1 and
ϕ(e3) = 0. Then using the linearity of ϕ and g we have

η(e3) = 1, ϕ2(X) = −X + η(X)e3, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

We also have
dη(X,Y ) = g(X,ϕY )

for all X,Y ∈ χ(M). Thus for ξ = e3, (ϕ, ξ, η, g) is a contact metric structure
and the Heisenberg group H3 is a Sasakian space form of constant holomorphic
sectional curvature −3 [10].

Now, let γ : I → H3 be a slant curve with contact angle α0. Assume that
γ is parametrized by arc length s and {T,N,B} denote the Frenet frame of γ.
Then we can write

T = sinα0 cosβe1 + sinα0 sinβe2 + cosα0e3, (5.2)

where β = β(s). Using (5.1) we have

∇TT = (− sinα0 sinβ (β′ − 2 cosα0)) e1

+ (sinα0 cosβ (β′ − 2 cosα0)) e2. (5.3)

On the other hand by the use of (5.2) it follows that

ϕT = − sinα0 sinβe1 + sinα0 cosβe2. (5.4)

By the use of (2.7) we find

∇̂TT = −β′ sinα0 sinβe1 + β′ sinα0 cosβe2. (5.5)

Since ∇̂TT = κ̂N , the equation (5.5) gives us

κ̂ = |β′| sinα0. (5.6)

Hence the principal normal vector field N of γ can be written as

N = sgn(β′) (− sinβe1 + cosβe2) .

Since B = T ×N , we find

B = sgn(β′) (− cosα0 cosβe1 − cosα0 sinβe2 + sinα0e3) .

Then it is easy to see that

B′ = sgn(β′) (β′ cosα0 − cos 2α0) (sinβe1 − cosβe2) ,

which gives us
τ̂ = β′ cosα0 − cos 2α0. (5.7)
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Now assume that τ̂ = 0. Then from Proposition 3.4, γ is a Legendre curve.
Using (5.7), we obtain

β(s) =
cos 2α0

cosα0
s+ c,

where c is a real constant. Hence from (5.6), κ̂ is a constant.
Let γ(s) = (x(s), y(s), z(s)). To find the explicit equations, we should inte-

grate the system dγ
ds = T . Then

dx

ds
= sinα0 cos

(
cos 2α0

cosα0
s+ c

)
,

dy

ds
= sinα0 sin

(
cos 2α0

cosα0
s+ c

)
,

dz

ds
= cosα0 +

1

2
sinα0

(
sin

(
cos 2α0

cosα0
s+ c

)
x(s)− cos

(
cos 2α0

cosα0
s+ c

)
y(s)

)
.

So using the method given in [4], the integration of above system gives the
following example:

Example 5.1. Let γ : I → H3 be a curve with the following parametric equations.

x(s) =
cosα0

cos 2α0
sinα0 sin(

cos 2α0

cosα0
s+ c) + d1,

y(s) = − cosα0

cos 2α0
sinα0 cos(

cos 2α0

cosα0
s+ c) + d2,

z(s) =

(
cosα0 +

cosα0

cos 2α0
sin2 α0

)
s− d1

cosα0

cos 2α0
sinα0 cos(

cos 2α0

cosα0
s+ c)

−d2
cosα0

cos 2α0
sinα0 sin(

cos 2α0

cosα0
s+ c) + d3.

Then γ is a pseudo-Hermitian Legendre circle with pseudo-Hermitian curvature

κ̂ =
∣∣∣ cos 2α0

cosα0

∣∣∣ sinα0, where c, d1, d2 and d3 are some real constants.

Now assume that τ̂ 6= 0 and κ̂ is a constant. Then from (5.6), β′ is a constant.
Then we can write β(s) = as+ b, where a and b are real constants. By the use
of equation (5.7), we find τ̂ = a cosα0− cos 2α0. Hence τ̂ is a constant. Similar
to the method using in previous example, let γ(s) = (x(s), y(s), z(s)). To find
the explicit equations, we should integrate the system dγ

ds = T . Then

dx

ds
= sinα0 cos (as+ b) ,

dy

ds
= sinα0 sin (as+ b) ,

dz

ds
= cosα0 +

1

2
sinα0 (sin (as+ b)x(s)− cos (as+ b) y(s)) .

Similarly, using the method given in [4], the integration of above system gives
the following example:
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Example 5.2. Let γ : I → H3 be a curve with the following parametric equations.

x(s) =
1

a
sinα0 sin(as+ b) + c1,

y(s) = −1

a
sinα0 cos(as+ b) + c2,

z(s) =

(
cosα0 +

1

a
sin2 α0

)
s− c1

a
sinα0 cos(as+ b)

−c2
a

sinα0 sin(as+ b) + c3.

Then γ is a pseudo-Hermitian slant helix with pseudo-Hermitian curvature κ̂ =
|a| sinα0 and pseudo-Hermitian torsion τ̂ = a cosα0−cos 2α0 , where a, b, c1, c2
and c3 are some real constants such that a 6= cos 2α0

cosα0
.
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