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1 Introduction

The study of submanifolds with constant mean curvature, i.e., CMC subman-
ifolds, and, in particular, that of CMC surfaces in 3-dimensional spaces, rep-
resents a very active research topic in Differential Geometry for more than 50
years.

There are several ways to generalize these submanifolds. For example, keep-
ing the CMC hypothesis and adding other geometric hypotheses to the sub-
manifold or, by contrast, in the particular case of hypersurfaces in space forms,
studying the hypersurfaces which are “highly non-CMC”.

The biconservative submanifolds seem to be an interesting generalization of
CMC submanifolds. Biconservative submanifolds in arbitrary manifolds (and in
particular, biconservative surfaces) which are also CMC have some remarkable
properties (see, for example [10, 18, 22, 28]). CMC hypersurfaces in space forms
are trivially biconservative, so more interesting is the study of biconservative
hypersurfaces which are non-CMC; recent results in non-CMC biconservative
hypersurfaces were obtained in [12, 19, 21, 29, 30].

The biconservative submanifolds are closely related to the biharmonic sub-
manifolds. More precisely, let us consider the bienergy functional defined for
all smooth maps between two Riemannian manifolds (Mm, g) and (Nn, h) and
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given by

E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2 vg, ϕ ∈ C∞(M,N),

where τ(ϕ) is the tension field of ϕ. A critical point of E2 is called a biharmonic
map and is characterized by the vanishing of the bitension field τ2(ϕ) (see [15]).

A Riemannian immersion ϕ : Mm → (Nn, h) or, simply, a submanifold M
of N , is called biharmonic if ϕ is a biharmonic map.

Now, if ϕ : M → (N,h) is a fixed map, then E2 can be thought as a functional
defined on the set of all Riemannian metrics on M . This new functional’s
critical points are Riemannian metrics determined by the vanishing of the stress-
bienergy tensor S2. This tensor field satisfies

divS2 = −〈τ2(ϕ), dϕ〉.

If divS2 = 0 for a submanifold M in N , then M is called a biconservative
submanifold and it is characterized by the fact that the tangent part of its
bitension field vanishes. Thus we can expect that the class of biconservative
submanifolds to be much larger than the class of biharmonic submanifolds.

The paper is organized as follows. After a section where we recall some
notions and general results about biconservative submanifolds, we present in
Section 3 the local, intrinsic characterization of biconservative surfaces. The
local, intrinsic characterization theorem provides the necessary and sufficient
conditions for an abstract surface

(
M2, g

)
to admit, locally, a biconservative

embedding with positive mean curvature function f and grad f 6= 0 at any
point.

Our main goal is to extend the local classification results for biconservative
surfaces in N3(c), with c = 0 and c = 1, to global results, i.e., we ask that
biconservative surfaces to be complete, with f > 0 everywhere and | grad f | > 0
on an open dense subset.

In Section 4 we consider the global problem and construct complete bicon-
servative surfaces in R3 with f > 0 on M and grad f 6= 0 at any point of an
open dense subset of M . We determine such surfaces in two ways. One way is
to use the local, extrinsic characterization of biconservative surfaces in R3 and
“glue” two pieces together in order to obtain a complete biconservative surface.
The other way is more analytic and consists in using the local, intrinsic charac-
terization theorem in order to obtain a biconservative immersion from

(
R2, gC0

)
in R3 with f > 0 on R2 and | grad f | > 0 on an open dense subset of R2 (the
immersion has to be unique); here, C0 is a positive constant and therefore we
obtain a one-parameter family of solutions. It is worth mentioning that, by
a simple transformation of the metric gC0 ,

(
R2,

√
−KC0

gC0

)
is (intrinsically)

isometric to a helicoid.
In the last section we consider the global problem of biconservative surfaces

in S3 with f > 0 on M and grad f 6= 0 at any point of an open dense subset
of M . As in the R3 case, we use the local, extrinsic classification of biconser-
vative surfaces in S3, but now the “gluing” process is not as clear as in R3.
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Further, we change the point of view and use the local, intrinsic characteriza-
tion of biconservative surfaces in S3. We determine the complete Riemannian
surfaces

(
R2, gC1,C∗1

)
which admit a biconservative immersion in S3 with f > 0

everywhere and | grad f | > 0 on an open dense subset of R2 and we show that,
up to isometries, there exists only a one-parameter family of such Riemannian
surfaces indexed by C1.

We end the paper with some figures, obtained for particular choices of the
constants, which represent the non-CMC complete biconservative surfaces in
R3 and the way how these surfaces can be obtained in S3.

2 Biconservative submanifolds;

general properties

Throughout this work, all manifolds, metrics, maps are assumed to be smooth,
i.e. in the C∞ category, and we will often indicate the various Riemannian
metrics by the same symbol 〈, 〉. All surfaces are assumed to be connected and
oriented.

A harmonic map ϕ : (Mm, g)→ (Nn, h) between two Riemannian manifolds
is a critical point of the energy functional

E : C∞(M,N)→ R, E(ϕ) =
1

2

∫
M

|dϕ|2 vg,

and it is characterized by the vanishing of its tension field

τ(ϕ) = traceg∇dϕ.

The idea of the stress-energy tensor associated to a functional comes from
D. Hilbert ([14]). Given a functional E, one can associate to it a symmetric
2-covariant tensor field S such that divS = 0 at the critical points of E. When
E is the energy functional, P. Baird and J. Eells ([1]), and A. Sanini ([27]),
defined the tensor field

S = e(ϕ)g − ϕ∗h =
1

2
|dϕ|2g − ϕ∗h,

and proved that
divS = −〈τ(ϕ), dϕ〉.

Thus, S can be chosen as the stress-energy tensor of the energy functional. It is
worth mentioning that S has a variational meaning. Indeed, we can fix a map
ϕ : Mm → (Nn, h) and think E as being defined on the set of all Riemannian
metrics on M . The critical points of this new functional are Riemannian metrics
determined by the vanishing of their stress-energy tensor S.

More precisely, we assume that M is compact and denote

G = {g : g is a Riemannian metric on M} .
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For a deformation {gt} of g we consider ω = d
dt

∣∣
t=0

gt ∈ TgG = C
(
�2T ∗M

)
.

We define the new functional

F : G → R, F(g) = E(ϕ)

and we have the following result.

Theorem 2.1 ([1, 27]). Let ϕ : Mm → (Nn, h) and assume that M is compact.
Then

d

dt

∣∣∣∣
t=0

F (gt) =
1

2

∫
M

〈ω, e(ϕ)g − ϕ∗h〉 vg.

Therefore g is a critical point of F if and only if its stress-energy tensor S
vanishes.

We mention here that, if ϕ : (Mm, g) → (Nn, h) is an arbitrary isometric
immersion, then divS = 0.

A natural generalization of harmonic maps is given by biharmonic maps. A
biharmonic map ϕ : (Mm, g) → (Nn, h) between two Riemannian manifolds is
a critical point of the bienergy functional

E2 : C∞(M,N)→ R, E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2 vg,

and it is characterized by the vanishing of its bitension field

τ2(ϕ) = −∆ϕτ(ϕ)− traceg R
N (dϕ, τ(ϕ))dϕ,

where
∆ϕ = − traceg (∇ϕ∇ϕ −∇ϕ∇)

is the rough Laplacian of ϕ−1TN and the curvature tensor field is

RN (X,Y )Z = ∇NX∇NY Z −∇NY ∇NXZ −∇N[X,Y ]Z, ∀X,Y, Z ∈ C(TM).

We remark that the biharmonic equation τ2(ϕ) = 0 is a fourth-order non-
linear elliptic equation and that any harmonic map is biharmonic. A non-
harmonic biharmonic map is called proper biharmonic.

In [16], G. Y. Jiang defined the stress-energy tensor S2 of the bienergy (also
called stress-bienergy tensor) by

S2(X,Y ) =
1

2
|τ(ϕ)|2〈X,Y 〉+ 〈dϕ,∇τ(ϕ)〉〈X,Y 〉

− 〈dϕ(X),∇Y τ(ϕ)〉 − 〈dϕ(Y ),∇Xτ(ϕ)〉,

as it satisfies
divS2 = −〈τ2(ϕ), dϕ〉.

The tensor field S2 has a variational meaning, as in the harmonic case. We
fix a map ϕ : Mm → (Nn, h) and define a new functional

F2 : G → R, F2(g) = E2(ϕ).

Then we have the following result.
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Theorem 2.2 ([17]). Let ϕ : Mm → (Nn, h) and assume that M is compact.
Then

d

dt

∣∣∣∣
t=0

F2 (gt) = −1

2

∫
M

〈ω, S2〉 vg,

so g is a critical point of F2 if and only if S2 = 0.

We mention that, if ϕ : (Mm, g) → (Nn, h) is an isometric immersion then
divS2 does not necessarily vanish.

A submanifold of a given Riemannian manifold (Nn, h) is a pair (Mm, ϕ),
where Mm is a manifold and ϕ : M → N is an immersion. We always consider
on M the induced metric g = ϕ∗h, thus ϕ : (M, g) → (N,h) is an isometric
immersion; for simplicity we will write ϕ : M → N without mentioning the
metrics. Also, we will write ϕ : M → N , or even M , instead of (M,ϕ).

A submanifold ϕ : Mm → Nn is called biharmonic if the isometric immersion
ϕ is a biharmonic map from (Mm, g) to (Nn, h).

Even if the notion of biharmonicity may be more appropriate for maps than
for submanifolds, as the domain and the codomain metrics are fixed and the
variation is made only through the maps, the biharmonic submanifolds proved
to be an interesting notion (see, for example, [24]).

In order to fix the notations, we recall here only the fundamental equations
of first order of a submanifold in a Riemannian manifold. These equations
define the second fundamental form, the shape operator and the connection in
the normal bundle. Let ϕ : Mm → Nn be an isometric immersion. For each
p ∈M , Tϕ(p)N splits as an orthogonal direct sum

Tϕ(p)N = dϕ(TpM)⊕ dϕ(TpM)⊥, (2.1)

and NM =
⋃
p∈M

dϕ(TpM)⊥ is referred to as the normal bundle of ϕ, or of M ,

in N .
Denote by ∇ and ∇N the Levi-Civita connections on M and N , respectively,

and by ∇ϕ the induced connection in the pull-back bundle

ϕ−1(TN) =
⋃
p∈M

Tϕ(p)N.

Taking into account the decomposition in (2.1), one has

∇ϕXdϕ(Y ) = dϕ(∇XY ) +B(X,Y ), ∀X,Y ∈ C(TM),

where B ∈ C(�2T ∗M ⊗ NM) is called the second fundamental form of M in
N . Here T ∗M denotes the cotangent bundle of M . The mean curvature vector
field of M in N is defined by H = (traceB)/m ∈ C(NM), where the trace is
considered with respect to the metric g.

Furthermore, if η ∈ C(NM), then

∇ϕXη = −dϕ(Aη(X)) +∇⊥Xη, ∀X ∈ C(TM),
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where Aη ∈ C(T ∗M ⊗TM) is called the shape operator of M in N in the direc-
tion of η, and ∇⊥ is the induced connection in the normal bundle. Moreover,
〈B(X,Y ), η〉 = 〈Aη(X), Y 〉, for all X,Y ∈ C(TM), η ∈ C(NM). In the case
of hypersurfaces, we denote f = traceA, where A = Aη and η is the unit nor-
mal vector field, and we have H = (f/m)η; f is the (m times) mean curvature
function.

A submanifold M of N is called PMC if H is parallel in the normal bundle,
and CMC if |H| is constant.

When confusion is unlikely we identify, locally, M with its image through ϕ,
X with dϕ(X) and ∇ϕXdϕ(Y ) with ∇NXY . With these identifications in mind,
we write

∇NXY = ∇XY +B(X,Y ),

and
∇NXη = −Aη(X) +∇⊥Xη.

If divS2 = 0 for a submanifold M in N , then M is called biconservative.
Thus, M is biconservative if and only if the tangent part of its bitension field
vanishes.

We have the following characterization theorem of biharmonic submanifolds,
obtained by splitting the bitension field in the tangent and normal part.

Theorem 2.3. A submanifold Mm of a Riemannian manifold Nn is biharmonic
if and only if

traceA∇⊥· H(·) + trace∇AH + trace
(
RN (·, H)·

)T
= 0

and
∆⊥H + traceB (·, AH(·)) + trace

(
RN (·, H)·

)⊥
= 0,

where ∆⊥ is the Laplacian in the normal bundle.

Various forms of the above result were obtained in [7, 17, 23]. From here we
deduce some characterization formulas for the biconservativity.

Corollary 2.4. Let Mm be a submanifold of a Riemannian manifold Nn. Then
M is a biconservative submanifold if and only if:

1. traceA∇⊥· H(·) + trace∇AH + trace
(
RN (·, H)·

)T
= 0;

2. m
2 grad

(
|H|2

)
+ 2 traceA∇⊥· H(·) + 2 trace

(
RN (·, H)·

)T
= 0;

3. 2 trace∇AH − m
2 grad

(
|H|2

)
= 0.

The following properties are immediate.

Proposition 2.5. Let Mm be a submanifold of a Riemannian manifold Nn. If
∇AH = 0 then M is biconservative.
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Proposition 2.6. Let Mm be a submanifold of a Riemannian manifold Nn.
Assume that N is a space form, i.e., it has constant sectional curvature, and M
is PMC. Then M is biconservative.

Proposition 2.7 ([2]). Let Mm be a submanifold of a Riemannian manifold
Nn. Assume that M is pseudo-umbilical, i.e., AH = |H|2I, and m 6= 4. Then
M is CMC.

If we consider the particular case of hypersurfaces, then Theorem 2.3 be-
comes

Theorem 2.8 ([2, 25]). If Mm is a hypersurface in a Riemannian manifold
Nm+1, then M is biharmonic if and only if

2A(grad f) + f grad f − 2f
(
RicciN (η)

)T
= 0,

and
∆f + f |A|2 − f RicciN (η, η) = 0,

where η is the unit normal vector field of M in N .

Corollary 2.9. A hypersurface Mm in a space form Nm+1(c) is biconservative
if and only if

A(grad f) = −f
2

grad f.

Corollary 2.10. Any CMC hypersurface in Nm+1(c) is biconservative.

Therefore, the biconservative hypersurfaces may be seen as the next research
topic after that of CMC surfaces.

3 Intrinsic characterization of

biconservative surfaces

We are interested to study biconservative surfaces which are non-CMC. We
will first look at them from a local, extrinsic point of view and then from a
global point of view. While by “local” we will mean the biconservative surfaces
ϕ : M2 → N3(c) with f > 0 and grad f 6= 0 at any point of M , by “global” we
will mean the complete biconservative surfaces ϕ : M2 → N3(c) with f > 0 at
any point of M and grad f 6= 0 at any point of an open and dense subset of M .

In this section, we consider the local problem, i.e., we take ϕ : M2 → N3(c) a
biconservative surface and assume that f > 0 and grad f 6= 0 at any point of M .
Let X1 = (grad f)/| grad f | and X2 two vector fields such that {X1(p), X2(p)}
is a positively oriented orthonormal basis at any point p ∈ M . In particular,
we obtain that M is parallelizable. If we denote by λ1 ≤ λ2 the eigenvalues
functions of the shape operator A, since A (X1) = −(f/2)X1 and traceA = f ,
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we get λ1 = −f/2 and λ2 = 3f/2. Thus the matrix of A with respect to the
(global) orthonormal frame field {X1, X2} is

A =

 − f2 0

0 3f
2

 .

We denote by K the Gaussian curvature and, from the Gauss equation, K =
c+ detA, we obtain

f2 =
4

3
(c−K). (3.1)

Thus c−K > 0 on M .
From the definitions of X1 and X2, we find that

grad f = (X1f)X1 and X2f = 0.

Using the connection 1-forms, the Codazzi equation and then the extrinsic and
intrinsic expression for the Gaussian curvature, we obtain the next result which
shows that the mean curvature function of a non-CMC biconservative surface
must satisfy a second-order partial differential equation. More precisely, we have
the following theorem.

Theorem 3.1 ([5]). Let ϕ : M2 → N3(c) a biconservative surface with f > 0
and grad f 6= 0 at any point of M . Then we have

f∆f + | grad f |2 +
4

3
cf2 − f4 = 0, (3.2)

where ∆ is the Laplace-Beltrami operator on M .

In fact, we can see that around any point of M there exists (U ;u, v) local
coordinates such that f = f(u, v) = f(u) and (3.2) is equivalent to

ff ′′ − 7

4
(f ′)

2 − 4

3
cf2 + f4 = 0, (3.3)

i.e., f must satisfy a second-order ordinary differential equation.
Indeed, let p0 ∈M be an arbitrary fixed point of M and let γ = γ(u) be an

integral curve of X1 with γ(0) = p0. Let φ the flow of X2 and (U ;u, v) local
coordinates with p0 ∈ U such that

X(u, v) = φγ(u)(v) = φ(γ(u), v).

We have
Xu(u, 0) = γ′(u) = X1(γ(u)) = X1(u, 0)

and
Xv(u, v) = φ′γ(u)(v) = X2

(
φγ(u)(v)

)
= X2(u, v).

If we write the Riemannian metric g on M in local coordinates as

g = g11du
2 + 2g12dudv + g22dv

2,
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we get g22 = |Xv|2 = |X2|2 = 1, and X1 can be expressed with respect to Xu

and Xv as

X1 =
1

σ
(Xu − g12Xv) = σ gradu,

where σ =
√
g11 − g212 > 0, σ = σ(u, v).

Let f ◦X = f(u, v). Since X2f = 0, we find that

f(u, v) = f(u, 0) = f(u), ∀(u, v) ∈ U.

It can be proved that

[X1, X2] =
3 (X1f)

4f
X2,

and thus X2X1f = X1X2f − [X1, X2] f = 0.
On the other hand we have

X2X1f = Xv

(
1
σf
′) = Xv

(
1
σ

)
f ′

= 0
. (3.4)

We recall that

grad f = (X1f)X1 =

(
1

σ
f ′
)
X1 6= 0

at any point of U , and then f ′ 6= 0 at any point of U . Therefore, from (3.4),
Xv (1/σ) = 0, i.e., σ = σ(u). Since g11(u, 0) = 1, and g12(u, 0) = 0, we have
σ = 1, i.e.,

X1 = Xu − g12Xv = gradu. (3.5)

In [5] it was found an equivalent expression for (3.2), i.e.,

(X1X1f) f =
7

4
(X1f)

2
+

4c

3
f2 − f4.

Therefore, using (3.5), relation (3.2) is equivalent to (3.3).

Remark 3.2. If ϕ : M2 → N3(c) is a non-CMC biharmonic surface, then,
there exists an open subset U such that f > 0, grad f 6= 0 at any point of U ,
and f satisfies the following system

∆f = f
(
2c− |A|2

)
A(grad f) = − f2 grad f

.

As we have seen, this system implies ∆f = f
(
2c− |A|2

)
f∆f + | grad f |2 + 4

3cf
2 − f4 = 0

.
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which, in fact, is a ODE system. We get ff ′′ − 3
4 (f ′)

2
+ 2cf2 − 5

2f
4 = 0

ff ′′ − 7
4 (f ′)

2 − 4
3cf

2 + f4 = 0

. (3.6)

As an immediate consequence we obtain

(f ′)
2

+
10

3
cf2 − 7

2
f4 = 0,

and combining it with the first integral

(f ′)
2

= 2f4 − 8cf2 + αf3/2

of the first equation from (3.6), where α ∈ R is a constant, we obtain

3

2
f5/2 +

14

3
cf1/2 − α = 0.

If we denote f̃ = f1/2, we get 3f̃5/2 + 14cf̃/3 − α = 0. Thus, f̃ satisfies a
polynomial equation with constant coefficients, so f̃ has to be a constant and
then, f is a constant, i.e., grad f = 0 on U (in fact, f has to be zero). Therefore,
we have a contradiction (see [6, 8] for c = 0 and [3, 4], for c = ±1).

We can also note that relation (3.2), which is an extrinsic relation, together
with (3.1), allows us to find an intrinsic relation that (M, g) must satisfy. More
precisely, the Gaussian curvature of M has to satisfy

(c−K)∆K − | gradK|2 − 8

3
K(c−K)2 = 0, (3.7)

and the conditions c−K > 0 and gradK 6= 0.
Formula (3.7) is very similar to the Ricci condition. Further, we will briefly

recall the Ricci problem. Given an abstract surface
(
M2, g

)
, we want to find the

conditions that have to be satisfied by M such that, locally, it admits a minimal
embedding in N3(c). It was proved (see [20, 26]) that if

(
M2, g

)
is an abstract

surface such that c−K > 0 at any point of M , where c ∈ R is a constant, then,
locally, it admits a minimal embedding in N3(c) if and only if

(c−K)∆K − | gradK|2 − 4K(c−K)2 = 0. (3.8)

Condition (3.8) is called the Ricci condition with respect to c, or simply the
Ricci condition. If (3.8) holds, then, locally, M admits a one-parameter family
of minimal embeddings in N3(c).

We can see that relations (3.7) and (3.8) are very similar and, in [9], the
authors studied the link between them. Thus, for c = 0, it was proved that if
we consider a surface

(
M2, g

)
which satisfies (3.7) and K < 0, then there exists

a very simple conformal transformation of the metric g such that
(
M2,
√
−Kg

)
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satisfies (3.8). A similar result was also proved for c 6= 0, but in this case, the
conformal factor has a complicated expression (and it is not enough to impose
that

(
M2, g

)
satisfy (3.7), but we need the stronger hypothesis of it to admit a

non-CMC biconservative immersion in N3(c)).
Unfortunately, condition (3.7) does not imply, locally, the existence of a bi-

conservative immersion in N3(c), as in the minimal case. We need a stronger
condition. It was obtained the following local, intrinsic characterization theo-
rem.

Theorem 3.3 ([9]). Let
(
M2, g

)
be an abstract surface and c ∈ R a constant.

Then, locally, M can be isometrically embedded in a space form N3(c) as a
biconservative surface with positive mean curvature having the gradient different
from zero at any point if and only if the Gaussian curvature K satisfies c −
K(p) > 0, (gradK)(p) 6= 0, for any point p ∈M , and its level curves are circles
in M with constant curvature

κ =
3| gradK|
8(c−K)

.

Remark 3.4. If the surface M in Theorem 3.3 is simply connected, then the
theorem holds globally, but, in this case, instead of a local isometric embedding
we have a global isometric immersion.

We remark that unlike in the minimal immersions case, if M satisfies the hy-
potheses from Theorem 3.3, then there exists a unique biconservative immersion
in N3(c) (up to an isometry of N3(c)), and not a one-parameter family.

The characterization theorem can be equivalently rewritten as below.

Theorem 3.5. Let
(
M2, g

)
be an abstract surface with Gaussian curvature K

satisfying c −K(p) > 0 and (gradK)(p) 6= 0 at any point p ∈ M , where c ∈ R
is a constant. Let X1 = (gradK)/| gradK| and X2 ∈ C(TM) be two vector
fields on M such that {X1(p), X2(p)} is a positively oriented basis at any point
of p ∈M . Then, the following conditions are equivalent:

(a) the level curves of K are circles in M with constant curvature

κ =
3| gradK|
8(c−K)

=
3X1K

8(c−K)
;

(b)

X2 (X1K) = 0 and ∇X2X2 =
−3X1K

8(c−K)
X1;

(c) locally, the metric g can be written as g = (c−K)−3/4
(
du2 + dv2

)
, where

(u, v) are local coordinates positively oriented, K = K(u), and K ′ > 0;

(d) locally, the metric g can be written as g = e2ϕ
(
du2 + dv2

)
, where (u, v) are

local coordinates positively oriented, and ϕ = ϕ(u) satisfies the equation

ϕ′′ = e−2ϕ/3 − ce2ϕ (3.9)
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and the condition ϕ′ > 0; moreover, the solutions of the above equation,
u = u(ϕ), are

u =

∫
ϕ

ϕ0

dτ√
−3e−2τ/3 − ce2τ + a

+ u0,

where ϕ is in some open interval I and a, u0 ∈ R are constants;

(e) locally, the metric g can be written as g = e2ϕ
(
du2 + dv2

)
, where (u, v) are

local coordinates positively oriented, and ϕ = ϕ(u) satisfies the equation

3ϕ′′′ + 2ϕ′ϕ′′ + 8ce2ϕϕ′ = 0 (3.10)

and the conditions ϕ′ > 0 and c+ e−2ϕϕ′′ > 0; moreover, the solutions of
the above equation, u = u(ϕ), are

u =

∫
ϕ

ϕ0

dτ√
−3be−2τ/3 − ce2τ + a

+ u0,

where ϕ is in some open interval I and a, b, u0 ∈ R are constants, b > 0.

The proof follows by direct computations and by using Remark 4.3 in [9]
and Proposition 3.4 in [21].

Remark 3.6. From the above theorem we have the following remarks.

(i) If condition (a) is satisfied, i.e., the integral curves of X2 are circles in
M with a precise constant curvature, then the integral curves of X1 are
geodesics of M .

(ii) If condition (c) is satisfied, then K has to be a solution of the equation

3K ′′(c−K) + 3 (K ′)
2

+ 8K(c−K)5/4 = 0.

(iii) If condition (c) is satisfied and c > 0, then
(
M2, (c−K)3/4g

)
is a flat

surface and, trivially, a Ricci surface with respect to c.

(iv) Let ϕ = ϕ(u) be a solution of equation (3.10). We consider the change of
coordinates

(u, v) = (αũ+ β, αṽ + β) ,

where α ∈ R is a positive constant and β ∈ R, and define

φ = ϕ (αũ+ β) + logα.

Then g = e2φ
(
dũ2 + dṽ2

)
and φ also satisfies equation (3.10). If ϕ = ϕ(u)

satisfies the first integral

ϕ′′ = be−2ϕ/3 − ce2ϕ,
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where b > 0, then, for α = b−3/8, φ = φ (ũ) satisfies

φ′′ = e−2φ/3 − ce2φ.

From here, as the classification is done up to isometries, we note that
the parameter b in the solution of (3.10) is not essential and only the
parameter a counts. Thus we have a one-parameter family of solutions.

(v) If ϕ is a solution of (3.10), for some c, then ϕ + α, where α is a real
constant, is a solution of (3.10) for ce2α.

(vi) If c = 0, we note that if ϕ is a solution of (3.10), then also ϕ + constant
is a solution of the same equation, i.e, condition (a) from Theorem 3.5 is
invariant under the homothetic tranformations of the metric g. Then, we
see that equation (3.10) is invariant under the affine change of parameter
u = αũ+ β, where α > 0. Therefore, we must solve equation (3.10) up to
this change of parameter and an additive constant of the solution ϕ. The
additive constant will be the parameter that counts.

In the c = 0 case, the solutions of equation (3.10), are explicitly determined
in the next proposition.

Proposition 3.7 ([21]). The solutions of the equation

3ϕ′′′ + 2ϕ′ϕ′′ = 0

which satisfy the conditions ϕ′ > 0 and ϕ′′ > 0, up to affine transformations of
the parameter with α > 0, are given by

ϕ(u) = 3 log(coshu) + constant, u > 0.

We note that, when c = 0, we have a one-parameter family of solutions of
equation (3.10), i.e., gC0 = C0(coshu)6

(
du2 + dv2

)
, C0 being a positive con-

stant.
If c 6= 0, then we can not determine explicitly ϕ = ϕ(u). Another way to

see that in the c 6= 0 case we have only a one-parameter family of solutions of
equation (3.10) is to rewrite the metric g in certain non-isothermal coordinates.

Further, we will consider only the c = 1 case and we have the next result.

Proposition 3.8 ([21]). Let
(
M2, g

)
be an abstract surface with g = e2ϕ(u)(du2+

dv2), where u = u(ϕ) satisfies

u =

∫
ϕ

ϕ0

dτ√
−3be−2τ/3 − e2τ + a

+ u0,

where ϕ is in some open interval I, a, b ∈ R are positive constants, and u0 ∈ R
is a constant. Then

(
M2, g

)
is isometric to(

DC1
, gC1

=
3

ξ2
(
−ξ8/3 + 3C1ξ2 − 3

)dξ2 +
1

ξ2
dθ2

)
,
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where DC1 = (ξ01, ξ02)×R, C1 ∈
(
4/
(
33/2

)
,∞
)

is a positive constant, and ξ01
and ξ02 are the positive vanishing points of −ξ8/3+3C1ξ

2−3, with 0 < ξ01 < ξ02.

Remark 3.9. Let us consider(
DC1

, gC1
=

3

ξ2
(
−ξ8/3 + 3C1ξ2 − 3

)dξ2 +
1

ξ2
dθ2

)

and DC′1
, gC′1 =

3

ξ̃2
(
−ξ̃8/3 + 3C ′1ξ̃

2 − 3
)dξ̃2 +

1

ξ̃2
dθ̃2

 .

The surfaces (DC1
, gC1

) and
(
DC′1

, gC′1
)

are isometric if and only if C1 = C ′1
and the isometry is Θ(ξ, θ) = (ξ,±θ + constant). Therefore, we have a one-
parameter family of surfaces.

Remark 3.10. We note that the expression of the Gaussian curvature of
(DC1

, gC1
) does not depend on C1. More precisely,

KC1(ξ, θ) = −1

9
ξ8/3 + 1.

But, if we change further the coordinates (ξ, θ) =
(
ξ01 + ξ̃ (ξ02 − ξ01) , θ̃

)
, then

we “fix” the domain, i.e., (DC1
, gC1

) is isometric to ((0, 1), g̃C1
) and C1 appears

in the expression of KC1

(
ξ̃, θ̃
)

.

4 Complete biconservative surfaces in

R3

In this section we consider the global problem and construct complete biconser-
vative surfaces in R3 with f > 0 everywhere and grad f 6= 0 at any point of an
open dense subset. Or, from intrinsic point of view, we construct a complete
abstract surface

(
M2, g

)
with K < 0 everywhere and gradK 6= 0 at any point

of an open dense subset of M , that admits a biconservative immersion in R3,
defined on the whole M , with f > 0 on M and | grad f | > 0 on the open dense
subset.

First, we recall a local extrinsic result which provides a characterization of
biconservative surfaces in R3.

Theorem 4.1 ([13]). Let M2 be a surface in R3 with f(p) > 0 and (grad f)(p) 6=
0 for any p ∈ M . Then, M is biconservative if and only if, locally, it is a
surface of revolution, and the curvature κ = κ(u) of the profile curve σ = σ(u),
|σ′(u)| = 1, is a positive solution of the following ODE

κ′′κ =
7

4
(κ′)

2 − 4κ4.
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In [5] there was found the local explicit parametric equation of a biconser-
vative surface in R3.

Theorem 4.2 ([5]). Let M2 be a biconservative surface in R3 with f(p) > 0 and
(grad f)(p) 6= 0 for any p ∈ M . Then, locally, the surface can be parametrized
by

XC̃0
(ρ, v) =

(
ρ cos v, ρ sin v, uC̃0

(ρ)
)
,

where

uC̃0
(ρ) =

3

2C̃0

(
ρ1/3

√
C̃0ρ2/3 − 1 +

1√
C̃0

log

(√
C̃0ρ

1/3 +

√
C̃0ρ2/3 − 1

))

with C̃0 a positive constant and ρ ∈
(
C̃
−3/2
0 ,∞

)
.

We denote by SC̃0
the image XC̃0

((
C̃
−3/2
0 ,∞

)
× R

)
. We note that any two

such surfaces are not locally isometric, so we have a one-parameter family of
biconservative surfaces in R3. These surfaces are not complete.

Remark 4.3. If ϕ : M2 → R3 is a biconservative surface with f > 0 and
grad f 6= 0 at any point, then there exists a unique C̃0 such that ϕ(M) ⊂ SC̃0

.
Indeed, any point admits an open neighborhood which is an open subset of
some SC̃0

. Let us consider p0 ∈ M . Then, there exists a unique C̃0 such that
ϕ(U) ⊂ SC̃0

, where U is an open neighborhood of p0. If A denotes the set of all
points of M such that they admit open neighborhoods which are open subsets
of that SC̃0

, then the set A is non-empty, open and closed in M . Thus, as M is
connected, it follows that A = M .

The “boundary” of SC̃0
, i.e., SC̃0

\ SC̃0
, is the circle(

C̃
−3/2
0 cos v, C̃

−3/2
0 sin v, 0

)
,

which lies in the Oxy plane. At a boundary point, the tangent plane to the
closure SC̃0

of SC̃0
is parallel to Oz. Moreover, along the boundary, the mean

curvature function is constant fC̃0
=
(

2C̃
3/2
0

)
/3 and grad fC̃0

= 0.

Thus, in order to obtain a complete biconservative surface in R3, we can
expect to “glue” along the boundary two biconservative surfaces of type SC̃0

corresponding to the same C̃0 (the two constants have to be the same) and
symmetric to each other, at the level of C∞ smoothness.

In fact, it was proved that we can glue two biconservative surfaces SC̃0
and

SC̃′0
, at the level of C∞ smoothness, only along the boundary and, in this case,

C̃0 = C̃ ′0.

Proposition 4.4 ([19, 21]). If we consider the symmetry of Graf uC , with re-
spect to the Oρ(= Ox) axis, we get a smooth, complete, biconservative surface
S̃C̃0

in R3. Moreover, its mean curvature function f̃C̃0
is positive and grad f̃C̃0

is different from zero at any point of an open dense subset of S̃C̃0
.
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Remark 4.5. The profile curve σC̃0
=
(
ρ, 0, uC̃0

(ρ)
)
≡
(
ρ, uC̃0

(ρ)
)

can be re-
parametrized as

σC̃0
(θ) =

(
σ1
C̃0

(θ), σ2
C̃0

(θ)
)

= C̃
−3/2
0

(
(θ + 1)3/2, 32

(√
θ2 + θ + log

(√
θ +
√
θ + 1

)))
, θ > 0,

(4.1)
and now XC̃0

= XC̃0
(θ, v).

Proposition 4.6. The homothety of R3, (x, y, z)→ C̃0(x, y, z), renders S̃1 onto
S̃
C̃
−2/3
0

.

In [21], there were also found the complete biconservative surfaces in R3 with
f > 0 at any point and grad f 6= 0 at any point of an open dense subset, but
there, the idea was to use the intrinsic characterization of the biconservative
surfaces. More precisely, we have the next global result.

Theorem 4.7 ([21]). Let
(
R2, gC0

= C0 (coshu)
6 (
du2 + dv2

))
be a surface,

where C0 ∈ R is a positive constant. Then we have:

(a) the metric on R2 is complete;

(b) the Gaussian curvature is given by

KC0
(u, v) = KC0

(u) = − 3

C0 (coshu)
8 < 0, K ′C0

(u) =
24 sinhu

C0 (coshu)
9 ,

and therefore gradKC0 6= 0 at any point of R2 \Ov;

(c) the immersion ϕC0 :
(
R2, gC0

)
→ R3 given by

ϕC0
(u, v) =

(
σ1
C0

(u) cos(3v), σ1
C0

(u) sin(3v), σ2
C0

(u)
)

is biconservative in R3, where

σ1
C0

(u) =

√
C0

3
(coshu)

3
, σ2

C0
(u) =

√
C0

2

(
1

2
sinh(2u) + u

)
, u ∈ R.

Sketch of the proof. The first two items follow by standard arguments. For the
last part, we note that choosing C̃0 = (9/C0)1/3 in (4.1) and using the change
of coordinates (θ, v) =

(
(sinhu)2, 3v

)
, where u > 0, the metric induced by

X(9/C0)1/3 coincides with gC0 . Then, we define ϕC0 as: for u > 0, ϕC0(u, v) is
obtained by rotating the profile curve

σ+(
9

C0

)1/3(u) = σ(
9

C0

)1/3(u) =

(
σ1(

9
C0

)1/3(u), σ2(
9

C0

)1/3(u)

)
,
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and for u < 0, ϕC0(u, v) is obtained by rotating the profile curve

σ−(
9

C0

)1/3(u) =

(
σ1(

9
C0

)1/3(−u),−σ2(
9

C0

)1/3(−u)

)
.

By simple transformations of the metric,
(
R2, gC0

)
becomes a Ricci surface

or a surface with constant Gaussian curvature.

Theorem 4.8. Consider the surface
(
R2, gC0

)
. Then

(
R2,

√
−KC0

gC0

)
is com-

plete, satisfies the Ricci condition and can be minimally immersed in R3 as a
helicoid or a catenoid.

Proposition 4.9. Consider the surface
(
R2, gC0

)
. Then

(
R2,−KC0gC0

)
has

constant Gaussian curvature 1/3 and it is not complete. Moreover,
(
R2,−KC0

gC0

)
is the universal cover of the surface of revolution in R3 given by

Z(u, v) =

(
α(u) cosh

(√
3

a
v

)
, α(u) sinh

(√
3

a
v

)
, β(u)

)
, (u, v) ∈ R2,

where a ∈ (0,
√

3] and

α(u) =
a

coshu
, β(u) =

∫
u

0

√
(3− a2) cosh2 τ + a2

cosh2 τ
dτ .

Remark 4.10. When a =
√

3, the immersion Z has only umbilical points and
the image Z

(
R2
)

is the round sphere of radius
√

3, without the North and the

South poles. Moreover, if a ∈ (0,
√

3), then Z has no umbilical points.

Concerning the biharmonic surfaces in R3 we have the following non-existence
result.

Theorem 4.11 ([6, 8]). There exists no proper biharmonic surface in R3.

5 Complete biconservative surfaces in
S3

As in the previous section, we consider the global problem for biconservative
surfaces in S3, i.e., our aim is to construct complete biconservative surfaces in
S3 with f > 0 everywhere and grad f 6= 0 at any point of an open and dense
subset.

We start with the following local, extrinsic result.
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Theorem 5.1 ([5]). Let M2 be a biconservative surface in S3 with f(p) > 0
and (grad f)(p) 6= 0 at any point p ∈ M . Then, locally, the surface, viewed in
R4, can be parametrized by

YC̃1
(u, v) = σ(u) +

4κ(u)−3/4

3
√
C̃1

(
f1(cos v − 1) + f2 sin v

)
,

where C̃1 ∈
(
64/

(
35/4

)
,∞
)

is a positive constant; f1, f2 ∈ R4 are two constant
orthonormal vectors; σ(u) is a curve parametrized by arclength that satisfies

〈σ(u), f1〉 =
4κ(u)−3/4

3
√
C̃1

, 〈σ(u), f2〉 = 0,

and, as a curve in S2, its curvature κ = κ(u) is a positive non constant solution
of the following ODE

κ′′κ =
7

4
(κ′)

2
+

4

3
κ2 − 4κ4

such that

(κ′)
2

= −16

9
κ2 − 16κ4 + C̃1κ

7/2.

Remark 5.2. The constant C̃1 determines uniquely the curvature κ, up to a
translation of u, and then κ, f1 and f2 determines uniquely the curve σ.

We consider f1 = e3 and f2 = e4 and change the coordinates (u, v) in (κ, v).
Then, we get

YC̃1
(κ, v) =

(√
1−

(
4

3
√
C̃1

κ−3/4
)2

cosµ(κ),

√
1−

(
4

3
√
C̃1

κ−3/4
)2

sinµ(κ),

4

3
√
C̃1

κ−3/4 cos v, 4

3
√
C̃1

κ−3/4 sin v

)
,

(5.1)
where (κ, v) ∈ (κ01, κ02)× R, κ01 and κ02 are positive solutions of

−16

9
κ2 − 16κ4 + C̃1κ

7/2 = 0

and

µ(κ) = ±108

∫
κ

κ0

√
C̃1τ

3/4(
−16 + 9C̃1τ3/2

)√
9C̃1τ3/2 − 16 (1 + 9τ2)

dτ + c0,

with c0 ∈ R a constant and κ0 ∈ (κ01, κ02). We note that an alternative
expression for YC̃1

was given in [11].

Remark 5.3. The limits limκ↘κ01
µ(κ) = µ (κ01) and limκ↗κ02

µ(κ) = µ (κ02)
are finite.
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Remark 5.4. For simplicity, we choose κ0 = (3C̃1/64)2.

If we denote SC̃1
the image of YC̃1

, then we note that the boundary of SC̃1
is

made up from two circles and along the boundary, the mean curvature function
is constant (two different constants) and its gradient vanishes. More precisely,
the boundary of SC̃1

is given by the curves(√
1−

(
4

3
√
C̃1

κ
−3/4
01

)2

cosµ (κ01) ,

√
1−

(
4

3
√
C̃1

κ
−3/4
01

)2

sinµ (κ01) ,

4

3
√
C̃1

κ
−3/4
01 cos v, 4

3
√
C̃1

κ
−3/4
01 sin v

)
and (√

1−
(

4

3
√
C̃1

κ
−3/4
02

)2

cosµ (κ02) ,

√
1−

(
4

3
√
C̃1

κ
−3/4
02

)2

sinµ (κ02) ,

4

3
√
C̃1

κ
−3/4
02 cos v, 4

3
√
C̃1

κ
−3/4
02 sin v

)
.

These curves are circles in affine planes in R4 parallel to the Ox3x4 plane and

their radii are
(

4κ
−3/4
01

)
/
(

3
√
C̃1

)
and

(
4κ
−3/4
02

)
/
(

3
√
C̃1

)
, respectively.

At a boundary point, using the coordinates (µ, v), we get that the tangent
plane to the closure of SC̃1

is spanned by a vector which is tangent to the
corresponding circle and by−√1−

(
4

3
√
C̃1

κ
−3/4
0i

)2

sinµ (κ0i) ,

√
1−

(
4

3
√
C̃1

κ
−3/4
0i

)2

cosµ (κ0i) , 0, 0

 ,

where i = 1 or i = 2.
Thus, in order to construct a complete biconservative surface in S3, we can

expect to glue along the boundary two biconservative surfaces of type SC̃1
, corre-

sponding to the same C̃1. In fact, if we want to glue two surfaces corresponding
to C̃1 and C̃ ′1 along the boundary, then these constants have to coincide and
there is no ambiguity concerning along which circle of the boundary we should
glue the two pieces. But this process is not as clear as in R3 since we should
repeat it infinitely many times.

Further, as in the R3 case, we change the point of view and use the intrinsic
characterization of the biconservative surfaces in S3.

The surface (DC1
, gC1

) defined in Section 3 is not complete but it has the
following properties.

Theorem 5.5 ([21]). Consider (DC1
, gC1

). Then, we have

(a) KC1(ξ, θ) = K(ξ, θ),

1−K(ξ, θ) =
1

9
ξ8/3 > 0, K ′(ξ) = − 8

27
ξ5/3
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and gradK 6= 0 at any point of DC1 ;

(b) the immersion φC1
: (DC1

, gC1
)→ S3 given by

φC1(ξ, θ) =

(√
1− 1

C1ξ2
cos ζ(ξ),

√
1− 1

C1ξ2
sin ζ(ξ),

cos(
√
C1θ)√

C1ξ
,

sin(
√
C1θ)√
C1ξ

)
,

is biconservative in S3, where

ζ(ξ) = ±

∫
ξ

ξ00

√
C1τ

4/3

(−1 + C1τ2)
√
−τ8/3 + 3C1τ2 − 3

dτ + c1,

with c1 ∈ R a constant and ξ00 ∈ (ξ01, ξ02).

Sketch of the proof. The first item follows by standard arguments. For the
second item, we note that choosing C̃1 = 31/4 · 16C1 in (5.1) and using the
change of coordinates (κ, v) =

(
3−3/2ξ4/3,

(
3−1/8

√
C1θ

)
/4
)
, the metric induced

by Y31/4·16C1
coincides with gC1 .

Then, we define φC1 as

φC1
(ξ, θ) = Y31/4·16C1

(
3−3/2ξ4/3,

3−1/8
√
C1θ

4

)
.

Remark 5.6. The limits limξ↘ξ01 ζ(ξ) = ζ (ξ01) and limξ↗ξ02 ζ(ξ) = ζ (ξ02) are
finite.

Remark 5.7. For simplicity, we choose ξ00 = (9C1/4)
3/2

.

Remark 5.8. The immersion φC1
depends on the sign ± and on the constant

c1 in the expression of ζ. As the classification is up to isometries of S3, the sign
and the constant are not important, but they will play an important role in the
gluing process.

The construction of complete biconservative surfaces in S3 consists in two
steps, and the key idea is to notice that (DC1

, gC1
) is, locally and intrinsically,

isometric to a surface of revolution in R3.
The first step is to construct a complete surface of revolution in R3 which

on an open dense subset is locally isometric to (DC1 , gC1). We start with the
next result.

Theorem 5.9 ([21]). Let us consider (DC1
, gC1

) as above. Then (DC1
, gC1

) is
the universal cover of the surface of revolution in R3 given by

ψC1,C∗1
(ξ, θ) =

(
χ(ξ) cos

θ

C∗1
, χ(ξ) sin

θ

C∗1
, ν(ξ)

)
, (5.2)
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where χ(ξ) = C∗1/ξ,

ν(ξ) = ±

∫
ξ

ξ00

√
3τ2 − (C∗1 )

2 (−τ8/3 + 3C1τ2 − 3
)

τ4
(
−τ8/3 + 3C1τ2 − 3

) dτ + c∗1, (5.3)

C∗1 ∈
(

0,
(
C1 − 4/33/2

)−1/2)
is a positive constant and c∗1 ∈ R is constant.

Remark 5.10. The immersion ψC1,C∗1
depends on the sign ± and on the con-

stant c∗1 in the expression of ν. We denote by S±C1,C∗1 ,c
∗
1

the image of ψC1,C∗1
.

Remark 5.11. The limits limξ↘ξ01 ν(ξ) = ν (ξ01) and limξ↗ξ02 ν(ξ) = ν (ξ02)
are finite.

We note that the boundary of S±C1,C∗1 ,c
∗
1

is given by the curves(
C∗1
ξ01

cos
θ

C∗1
,
C∗1
ξ01

sin
θ

C∗1
, ν (ξ01)

)
and (

C∗1
ξ02

cos
θ

C∗1
,
C∗1
ξ02

sin
θ

C∗1
, ν (ξ02)

)
These curves are circles in affine planes in R3 parallel to the Oxy plane and
their radii are C∗1/ξ01 and C∗1/ξ02, respectively.

At a boundary point, using the coordinates (ν, θ), we get that the tangent
plane to the closure of S±C1,C∗1 ,c

∗
1

is spanned by a vector which is tangent to

the corresponding circle and by the vector (0, 0, 1). Thus, the tangent plane is
parallel to the rotational axis Oz.

Geometrically, we start with a piece of type S±C1,C∗1 ,c
∗
1

and by symmetry to

the planes where the boundary lie, we get our complete surface S̃C1,C∗1
; the

process is periodic and we perform it along the whole Oz axis.
Analytically, we fix C1 and C∗1 , and alternating the sign and with appropriate

choices of the constant c∗1, we can construct a complete surface of revolution
S̃C1,C∗1

in R3 which on an open subset is locally isometric to (DC1 , gC1). In fact,
these choices of + and −, and of the constants c∗1 are uniquely determined by
the “first” choice of +, or of −, and of the constant c∗1. We start with + and
c∗1 = 0.

The profile curve of S±C1,C∗1 ,c
∗
1

can be seen as the graph of a function depend-

ing on ν and this allows us to obtain a function F such that the profile curve
of S̃C1,C∗1

to be the graph of the function χ ◦ F depending on ν and defined on
the whole Oz (or Oν). The function F : R → [ξ01, ξ02] is periodic and at least
of class C3.

Theorem 5.12 ([21]). The surface of revolution given by

ΨC1,C∗1
(ν, θ) =

(
(χ ◦ F )(ν) cos

θ

C∗1
, (χ ◦ F )(ν) sin

θ

C∗1
, ν

)
, (ν, θ) ∈ R2,
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is complete and, on an open dense subset, it is locally isometric to (DC1 , gC1).
The induced metric is given by

gC1,C∗1
(ν, θ) =

3F 2(ν)

3F 2(ν)− (C∗1 )
2

(−F 8/3(ν) + 3C1F 2(ν)− 3)
dν2 +

1

F 2(ν)
dθ2,

(ν, θ) ∈ R2. Moreover, gradK 6= 0 at any point of that open dense subset, and
1−K > 0 everywhere.

From Theorem 5.12 we easily get the following result.

Proposition 5.13 ([21]). The universal cover of the surface of revolution given
by ΨC1,C∗1

is R2 endowed with the metric gC1,C∗1
. It is complete, 1−K > 0 on R2

and, on an open dense subset, it is locally isometric to (DC1 , gC1) and gradK 6=
0 at any point. Moreover any two surfaces

(
R2, gC1,C∗1

)
and

(
R2, gC1,C∗′1

)
are

isometric.

The second step is to construct effectively the biconservative immersion from(
R2, gC1,C∗1

)
in S3, or from S̃C1,C∗1

in S3. The geometric ideea of the construction

is the following: from each piece S±C1,C∗1 ,c
∗
1

of S̃C1,C∗1
we “go back” to (DC1

, gC1
)

and then, using φC1 and a specific choice of + or − and of the constant c1, we
get our biconservative immersion ΦC1,C∗1

. Again, the choices of + and −, and
of the constant c1 are uniquely determined (modulo 2π, for c1) by the “first”
choice of +, or of −, and of the constant c1 (see [21] for all details).

Some numerical experiments suggest that ΦC1,C∗1
is not periodic and it has

self-intersections along circles parallel to Ox3x4.
The projection of ΦC1,C∗1

on the Ox1x2 plane is a curve which lies in the

annulus of radii
√

1− 1/ (C1ξ201) and
√

1− 1/ (C1ξ202). It has self-intersections
and is dense in the annulus.

Concerning the biharmonic surfaces in S3 we have the following classification
result.

Theorem 5.14 ([4]). Let ϕ : M2 → S3 be a proper biharmonic surface. Then
ϕ(M) is an open part of the small hypersphere S2(1/

√
2).

Appendix

In the c = 0 case, the idea was to construct, by symmetry, a complete bicon-
servative surface in R3 starting with a piece of a biconservative surface. We
illustrate this in the following figure obtained for C0 = 1.
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In the c = 1 case, the construction of a complete biconservative surface in
S3 can be summarized in the next diagram, obtained for C1 = C∗1 = 1, c∗1 = 0
and we started with + in the expression of ν.
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(
M2, g

)

ξ01 ξ02 ξ

θ

(DC1 , gC1)

ISOMETRY

φ
C

1
=
φ
±C

1
,c

1

B
IC

O
N

S
E

R
V

A
T

IV
E

S3

ψC1,C∗1
= ψ±C1,C∗1 ,c

∗
1

ISOMETRY

S±C1,C∗1 ,c
∗
1
⊂ R3

S̃C1,C∗1
⊂ R3 complete

playing with the

constant c ∗
1 and ±

playing with the constant
c1 and ±

The projection of Φ1,1 on the Ox1x2 plane is represented in the next figure
(c1 = 0).
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x1

x2

The last two figures represent the signed curvature of the profile curve of
S̃C1,C∗1

and the signed curvature of the curve obtained projecting Φ1,1 on the
Ox1x2 plane.

ν

κ

ν

κ
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