Proceedings Book of International Work-
shop on Theory of Submanifolds (Vol-
ume: 1(2016)) June 2-4, 2016, Istanbul,
Turkey. Editors: Nurettin Cenk Turgay,
Elif Ozkara Canfes, Joeri Van der Veken
and Cornelia-Livia Bejan

Recieved: January 26, 2017

Accepted: March 14, 2017

DOI: 10.24064 /iwts2016.2017.1

Global Properties of

Biconservative Surfaces in
RS and S°

Simona Nistor, Cezar Oniciuc

Simona Nistor: Faculty of Mathematics - Research Department, Al. I. Cuza University of
Tasi Bd. Carol I, 11 700506 Iasi, Romania, e-mail:nistor.simona@ymail.com,

Cezar Oniciuc: Faculty of Mathematics, Al. I. Cuza University of Iasi Bd. Carol I, 11 700506
Tasi, Romania, e-mail:oniciuccQuaic.ro

Abstract. We survey some recent results on biconservative surfaces in 3-
dimensional space forms N?3(c) with a special emphasis on the ¢ = 0 and
c =1 cases. We study the local and global properties of such surfaces, from
extrinsic and intrinsic point of view. We obtain all non-CMC' complete
biconservative surfaces in R? and S3.

Keywords. Biconservative surfaces - complete surfaces - mean curvature
function - real space forms - minimal surfaces.

MSC 2010 Classification. Primary: 53A10; Secondary: 53C40 - 53C42.

1 INTRODUCTION

The study of submanifolds with constant mean curvature, i.e., CMC subman-
ifolds, and, in particular, that of CMC' surfaces in 3-dimensional spaces, rep-
resents a very active research topic in Differential Geometry for more than 50
years.

There are several ways to generalize these submanifolds. For example, keep-
ing the CMC hypothesis and adding other geometric hypotheses to the sub-
manifold or, by contrast, in the particular case of hypersurfaces in space forms,
studying the hypersurfaces which are “highly non-CMC”.

The biconservative submanifolds seem to be an interesting generalization of
CMC submanifolds. Biconservative submanifolds in arbitrary manifolds (and in
particular, biconservative surfaces) which are also CMC have some remarkable
properties (see, for example [10, 18, 22, 28]). C'M C' hypersurfaces in space forms
are trivially biconservative, so more interesting is the study of biconservative
hypersurfaces which are non-C' M C'; recent results in non-C'M C biconservative
hypersurfaces were obtained in [12, 19, 21, 29, 30].

The biconservative submanifolds are closely related to the biharmonic sub-
manifolds. More precisely, let us consider the bienergy functional defined for
all smooth maps between two Riemannian manifolds (M™, g) and (N™, h) and
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given by
1 o0
Bie) =5 [ 1r@F v e C¥OLN)

where 7(¢) is the tension field of . A critical point of Ej is called a biharmonic
map and is characterized by the vanishing of the bitension field T2 () (see [15]).

A Riemannian immersion ¢ : M™ — (N™ h) or, simply, a submanifold M
of N, is called biharmonic if ¢ is a biharmonic map.

Now, if ¢ : M — (N, h) is a fixed map, then Ey can be thought as a functional
defined on the set of all Riemannian metrics on M. This new functional’s
critical points are Riemannian metrics determined by the vanishing of the stress-
bienergy tensor Se. This tensor field satisfies

div Sy = _<7-2(@)a d<p>

If divSy = 0 for a submanifold M in N, then M is called a biconservative
submanifold and it is characterized by the fact that the tangent part of its
bitension field vanishes. Thus we can expect that the class of biconservative
submanifolds to be much larger than the class of biharmonic submanifolds.

The paper is organized as follows. After a section where we recall some
notions and general results about biconservative submanifolds, we present in
Section 3 the local, intrinsic characterization of biconservative surfaces. The
local, intrinsic characterization theorem provides the necessary and sufficient
conditions for an abstract surface (M 2, g) to admit, locally, a biconservative
embedding with positive mean curvature function f and grad f # 0 at any
point.

Our main goal is to extend the local classification results for biconservative
surfaces in N3(c), with ¢ = 0 and ¢ = 1, to global results, i.e., we ask that
biconservative surfaces to be complete, with f > 0 everywhere and | grad f| > 0
on an open dense subset.

In Section 4 we consider the global problem and construct complete bicon-
servative surfaces in R? with f > 0 on M and grad f # 0 at any point of an
open dense subset of M. We determine such surfaces in two ways. One way is
to use the local, extrinsic characterization of biconservative surfaces in R3 and
“glue” two pieces together in order to obtain a complete biconservative surface.
The other way is more analytic and consists in using the local, intrinsic charac-
terization theorem in order to obtain a biconservative immersion from (Rg, QCO)
in R3 with f > 0 on R? and |grad f| > 0 on an open dense subset of R? (the
immersion has to be unique); here, Cy is a positive constant and therefore we
obtain a one-parameter family of solutions. It is worth mentioning that, by
a simple transformation of the metric go,, (RQ, v—Kc, gco) is (intrinsically)
isometric to a helicoid.

In the last section we consider the global problem of biconservative surfaces
in S with f > 0 on M and grad f # 0 at any point of an open dense subset
of M. As in the R3 case, we use the local, extrinsic classification of biconser-
vative surfaces in S3, but now the “gluing” process is not as clear as in R3.
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Further, we change the point of view and use the local, intrinsic characteriza-
tion of biconservative surfaces in S?. We determine the complete Riemannian
surfaces (RQ, gCl,C{‘) which admit a biconservative immersion in S with f > 0
everywhere and | grad f| > 0 on an open dense subset of R? and we show that,
up to isometries, there exists only a one-parameter family of such Riemannian
surfaces indexed by C1.

We end the paper with some figures, obtained for particular choices of the
constants, which represent the non-CMC complete biconservative surfaces in
R3 and the way how these surfaces can be obtained in S3.

2 BICONSERVATIVE SUBMANIFOLDS;
GENERAL PROPERTIES

Throughout this work, all manifolds, metrics, maps are assumed to be smooth,
i.e. in the C'*° category, and we will often indicate the various Riemannian
metrics by the same symbol (,). All surfaces are assumed to be connected and
oriented.

A harmonic map ¢ : (M™,g) — (N™, h) between two Riemannian manifolds
is a critical point of the energy functional

1
E:C¥(M,N) =R, E(p) =3 /M |dip|? v,

and it is characterized by the vanishing of its tension field
T(p) = tracey Vde.

The idea of the stress-energy tensor associated to a functional comes from
D. Hilbert ([14]). Given a functional F, one can associate to it a symmetric
2-covariant tensor field S such that div.S = 0 at the critical points of . When
E is the energy functional, P. Baird and J. Eells ([1]), and A. Sanini (][27]),
defined the tensor field

* 1 *
S=e(p)g—p*h= ildw\zg —¢*h,
and proved that
div.S = —{7(¢),dp).

Thus, S can be chosen as the stress-energy tensor of the energy functional. It is
worth mentioning that S has a variational meaning. Indeed, we can fix a map
@ : M™ — (N™ h) and think F as being defined on the set of all Riemannian
metrics on M. The critical points of this new functional are Riemannian metrics
determined by the vanishing of their stress-energy tensor S.

More precisely, we assume that M is compact and denote

G ={g : g is a Riemannian metric on M} .
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For a deformation {g;} of g we consider w = %’t:o g € T,G = C (&*T*M).
We define the new functional

F:G—=R, Flg)=E(p)
and we have the following result.

Theorem 2.1 ([1, 27]). Let ¢ : M™ — (N", h) and assume that M is compact.
Then

d 1 X
G Fla=5 [ oo v,

Therefore g is a critical point of F if and only if its stress-energy tensor S
vanishes.

We mention here that, if ¢ : (M™,g) — (N™,h) is an arbitrary isometric
immersion, then div.S = 0.

A natural generalization of harmonic maps is given by biharmonic maps. A
biharmonic map ¢ : (M™,g) — (N™, h) between two Riemannian manifolds is
a critical point of the bienergy functional

1
B2 CX(MN) =R, Eale) =3 [ 1) vy
M
and it is characterized by the vanishing of its bitension field

To(p) = —A¥T(p) — trace, RN(dga,T(gp))dga,

where
A¥ = —trace, (V¥V¥ —VE)

is the rough Laplacian of ¢~ 'TN and the curvature tensor field is
RN(X,Y)Z =VYVYZ - V¥VRZ -V Z, VXY, Z € C(TM).

We remark that the biharmonic equation m2(p) = 0 is a fourth-order non-
linear elliptic equation and that any harmonic map is biharmonic. A non-
harmonic biharmonic map is called proper biharmonic.

In [16], G. Y. Jiang defined the stress-energy tensor Ss of the bienergy (also
called stress-bienergy tensor) by

S2(X,Y) =35 lr(@)P(X.¥) + (dp, Vr(@))(X,Y)
~ {dp(X), Ty 7(g)) — (do(Y), Vxr (o))

as it satisfies
diVSQ = —<T2(g0), d(p>

The tensor field Ss has a variational meaning, as in the harmonic case. We
fix a map ¢ : M™ — (N™, h) and define a new functional

Fo:G =R, Falg) = Ex(p).

Then we have the following result.
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Theorem 2.2 ([17]). Let ¢ : M™ — (N™, h) and assume that M is compact.

Then
d 1
i F2 (gt):—§ M<W»S2> Vg,

t=0
so g is a critical point of Fo if and only if So = 0.

We mention that, if ¢ : (M™,g) — (N", k) is an isometric immersion then
div Sy does not necessarily vanish.

A submanifold of a given Riemannian manifold (N™, h) is a pair (M™, @),
where M™ is a manifold and ¢ : M — N is an immersion. We always consider
on M the induced metric g = ¢*h, thus ¢ : (M,g) — (N, h) is an isometric
immersion; for simplicity we will write ¢ : M — N without mentioning the
metrics. Also, we will write ¢ : M — N, or even M, instead of (M, p).

A submanifold ¢ : M™ — N™ is called biharmonic if the isometric immersion
© is a biharmonic map from (M™, g) to (N™, h).

Even if the notion of biharmonicity may be more appropriate for maps than
for submanifolds, as the domain and the codomain metrics are fixed and the
variation is made only through the maps, the biharmonic submanifolds proved
to be an interesting notion (see, for example, [24]).

In order to fix the notations, we recall here only the fundamental equations
of first order of a submanifold in a Riemannian manifold. These equations
define the second fundamental form, the shape operator and the connection in
the normal bundle. Let ¢ : M™ — N™ be an isometric immersion. For each
p € M, Ty, N splits as an orthogonal direct sum

TN = do(T,M) & do(T,M)™*, (2.1)

and NM = U dp(T,M)™* is referred to as the normal bundle of ¢, or of M,
peM
in N.
Denote by V and V¥ the Levi-Civita connections on M and N, respectively,
and by V¥ the induced connection in the pull-back bundle

e NTN) = | TpmN.
peEM

Taking into account the decomposition in (2.1), one has
V%do(Y) =dp(VxY) + B(X,Y), VXY e C(TM),

where B € C(®?T*M ® NM) is called the second fundamental form of M in
N. Here T*M denotes the cotangent bundle of M. The mean curvature vector
field of M in N is defined by H = (trace B)/m € C(NM), where the trace is
considered with respect to the metric g.

Furthermore, if n € C(NM), then

Vin = —dp(A,(X)) + Vxn, VX e€C(TM),

34



where A, € C(T*M ®@TM) is called the shape operator of M in N in the direc-
tion of 7, and V+ is the induced connection in the normal bundle. Moreover,
(B(X,Y),n) = (A4,(X),Y), for all X,Y € C(TM), n € C(NM). In the case
of hypersurfaces, we denote f = trace A, where A = A, and 7 is the unit nor-
mal vector field, and we have H = (f/m)n; f is the (m times) mean curvature
Sfunction.

A submanifold M of N is called PMC if H is parallel in the normal bundle,
and CMC if |H| is constant.

When confusion is unlikely we identify, locally, M with its image through ¢,
X with dp(X) and Vidp(Y) with VY. With these identifications in mind,
we write

VXY = VxY + B(X,Y),

and
Vi =—4,(X) + Vxn.

If div.Ss = 0 for a submanifold M in N, then M is called biconservative.
Thus, M is biconservative if and only if the tangent part of its bitension field
vanishes.

We have the following characterization theorem of biharmonic submanifolds,
obtained by splitting the bitension field in the tangent and normal part.

Theorem 2.3. A submanifold M™ of a Riemannian manifold N™ is biharmonic
if and only if

trace Ay g (+) + trace VAy + trace (R (-, H))T =0

and
AL H + trace B (-, Ay () + trace (R (., H))J' =0,

where A is the Laplacian in the normal bundle.

Various forms of the above result were obtained in [7, 17, 23]. From here we
deduce some characterization formulas for the biconservativity.

Corollary 2.4. Let M™ be a submanifold of a Riemannian manifold N™. Then
M is a biconservative submanifold if and only if:

1. trace AgyLp(-) + trace VAy + trace (RV (., H))T =0;

2. Zgrad (|H|?) + 2 trace Ay g (-) + 2trace (RV (, H))T =0;
3. 2trace VAy — 2 grad (|H|?) = 0.

The following properties are immediate.

Proposition 2.5. Let M™ be a submanifold of a Riemannian manifold N™. If
VAg =0 then M is biconservative.
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Proposition 2.6. Let M™ be a submanifold of a Riemannian manifold N™.
Assume that N is a space form, i.e., it has constant sectional curvature, and M
is PMC'. Then M is biconservative.

Proposition 2.7 ([2]). Let M™ be a submanifold of a Riemannian manifold
N™. Assume that M is pseudo-umbilical, i.e., Ay = |H|?I, and m # 4. Then
M is CMC.

If we consider the particular case of hypersurfaces, then Theorem 2.3 be-
comes

Theorem 2.8 ([2, 25]). If M™ is a hypersurface in a Riemannian manifold
N™FL then M is biharmonic if and only if

2A(grad f) + fegrad f — 2f (RicciN(n))T =0,

and
Af + fIA]? = fRicei™ (n,n) =0,

where n is the unit normal vector field of M in N.

Corollary 2.9. A hypersurface M™ in a space form N™%1(c) is biconservative
if and only if

A(grad f) = —g grad f.
Corollary 2.10. Any CMC hypersurface in N™1(c) is biconservative.

Therefore, the biconservative hypersurfaces may be seen as the next research
topic after that of CM C surfaces.

3 INTRINSIC CHARACTERIZATION OF
BICONSERVATIVE SURFACES

We are interested to study biconservative surfaces which are non-CMC. We
will first look at them from a local, extrinsic point of view and then from a
global point of view. While by “local” we will mean the biconservative surfaces
@ : M? — N3(c) with f > 0 and grad f # 0 at any point of M, by “global” we
will mean the complete biconservative surfaces ¢ : M? — N3(c) with f > 0 at
any point of M and grad f # 0 at any point of an open and dense subset of M.

In this section, we consider the local problem, i.e., we take ¢ : M? — N3(c) a
biconservative surface and assume that f > 0 and grad f # 0 at any point of M.
Let X; = (grad f)/| grad f| and X5 two vector fields such that {X;(p), X2(p)}
is a positively oriented orthonormal basis at any point p € M. In particular,
we obtain that M is parallelizable. If we denote by A; < Ao the eigenvalues
functions of the shape operator A, since A(X;) = —(f/2)X; and trace A = f,
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we get Ay = —f/2 and Ay = 3f/2. Thus the matrix of A with respect to the
(global) orthonormal frame field {X;, Xo} is

_é 0
A =
3
0 ¥
We denote by K the Gaussian curvature and, from the Gauss equation, K =
c+ det A, we obtain
f2=-(c—-K). (3.1)

Thus ¢ — K >0 on M.
From the definitions of X; and X5, we find that

grad f = (X1 f) X1 and Xof =0.

Using the connection 1-forms, the Codazzi equation and then the extrinsic and
intrinsic expression for the Gaussian curvature, we obtain the next result which
shows that the mean curvature function of a non-C'MC' biconservative surface
must satisfy a second-order partial differential equation. More precisely, we have
the following theorem.

Theorem 3.1 ([5]). Let ¢ : M? — N3(c) a biconservative surface with f > 0
and grad f # 0 at any point of M. Then we have

fAf—l—|g1raudf|2—&—§cfg—f4:07 (3.2)

where A is the Laplace-Beltrami operator on M.

In fact, we can see that around any point of M there exists (U;u,v) local
coordinates such that f = f(u,v) = f(u) and (3.2) is equivalent to

FIT =LY = gef 1 =0, (33)

i.e., f must satisfy a second-order ordinary differential equation.

Indeed, let pg € M be an arbitrary fixed point of M and let v = «(u) be an
integral curve of X7 with v(0) = pg. Let ¢ the flow of X5 and (U;u,v) local
coordinates with pg € U such that

X(u7 U) = ¢’y(u) (U) = (b(,)/(u)a U)'
We have
Xu(u,0) =+ (u) = X1(y(u)) = X1(u,0)
and
Xo(u,0) = ¢y (V) = X (dyu) (v)) = Xa(u,v).

If we write the Riemannian metric g on M in local coordinates as

g= gndu2 + 2g12dudv + g22dv2,
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we get gog = |Xv|2 = |X2\2 =1, and X; can be expressed with respect to X,
and X, as

1
X1 == (Xu — g12Xy) = o gradu,
o

where 0 = \/g11 — 935 > 0, 0 = o (u, ).

Let fo X = f(u,v). Since Xof = 0, we find that

fu,v) = f(u,0) = f(u), V(u,v) €U

It can be proved that

(X1, Xo] = MX%

4f
and thus X2X1f = X1X2f — [Xl,Xg] f =0.
On the other hand we have

X2X1f = X, (%f,) =X, (l) f/
= 0 ’

We recall that )
med £ = (600) % = (1) X1 £0

at any point of U, and then f’ # 0 at any point of U. Therefore, from (3.4),
X, (1/o) =0, i.e., 0 = o(u). Since g11(u,0) = 1, and g12(u,0) = 0, we have
oc=1,ie,

X =X, — g12X, = grad u. (3.5)

In [5] it was found an equivalent expression for (3.2), i.e.,

(X f) f = T () + 57

Therefore, using (3.5), relation (3.2) is equivalent to (3.3).

Remark 3.2. If ¢ : M? — N3(c) is a non-CMC biharmonic surface, then,
there exists an open subset U such that f > 0, grad f # 0 at any point of U,
and f satisfies the following system

Af = f(2c—|A])
A(grad f) = —% grad f '
As we have seen, this system implies
Af = f(2c—|A])

FAS +|grad f|* + 5ef? = f1 =0
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which, in fact, is a ODE system. We get

FF =3 +2ef? =511 =0
(3.6)
P =5 = gef*+ 11 =0

As an immediate consequence we obtain

7
7f4:Oa

2 10
(f") +§Cf2—2

and combining it with the first integral
(f) = 2f* = 8ef + af*?

of the first equation from (3.6), where @ € R is a constant, we obtain
3 14
5,]05/2 + chl/Q —a=0.

If we denote f = f1/2, we get 3f5/2 + 14cf/3 —a = 0. Thus, f satisfies a
polynomial equation with constant coefficients, so f has to be a constant and
then, f is a constant, i.e., grad f = 0 on U (in fact, f has to be zero). Therefore,
we have a contradiction (see [6, 8] for ¢ = 0 and [3, 4], for ¢ = £1).

We can also note that relation (3.2), which is an extrinsic relation, together
with (3.1), allows us to find an intrinsic relation that (M, g) must satisfy. More
precisely, the Gaussian curvature of M has to satisfy

(c — K)AK — | grad K|* — gK(c —K)? =0, (3.7)

and the conditions ¢ — K > 0 and grad K # 0.

Formula (3.7) is very similar to the Ricci condition. Further, we will briefly
recall the Ricci problem. Given an abstract surface (M?, g), we want to find the
conditions that have to be satisfied by M such that, locally, it admits a minimal
embedding in N3(c). It was proved (see [20, 26]) that if (M2, g) is an abstract
surface such that ¢ — K > 0 at any point of M, where ¢ € R is a constant, then,
locally, it admits a minimal embedding in N3(c) if and only if

(c— K)AK — |grad K|? — 4K (c — K)? = 0. (3.8)

Condition (3.8) is called the Ricci condition with respect to ¢, or simply the
Ricci condition. If (3.8) holds, then, locally, M admits a one-parameter family
of minimal embeddings in N3(c).

We can see that relations (3.7) and (3.8) are very similar and, in [9], the
authors studied the link between them. Thus, for ¢ = 0, it was proved that if
we consider a surface (M2, g) which satisfies (3.7) and K < 0, then there exists
a very simple conformal transformation of the metric g such that (M 2 V-K g)
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satisfies (3.8). A similar result was also proved for ¢ # 0, but in this case, the
conformal factor has a complicated expression (and it is not enough to impose
that (M?,g) satisfy (3.7), but we need the stronger hypothesis of it to admit a
non-C'MC biconservative immersion in N3(c)).

Unfortunately, condition (3.7) does not imply, locally, the existence of a bi-
conservative immersion in N3(c), as in the minimal case. We need a stronger
condition. It was obtained the following local, intrinsic characterization theo-
rem.

Theorem 3.3 ([9]). Let (M?,g) be an abstract surface and ¢ € R a constant.
Then, locally, M can be isometrically embedded in a space form N3(c) as a
biconservative surface with positive mean curvature having the gradient different
from zero at any point if and only if the Gaussian curvature K satisfies ¢ —
K(p) > 0, (grad K)(p) # 0, for any point p € M, and its level curves are circles
in M with constant curvature

_ 3| grad K|
- 8(c—K) '

Remark 3.4. If the surface M in Theorem 3.3 is simply connected, then the
theorem holds globally, but, in this case, instead of a local isometric embedding
we have a global isometric immersion.

We remark that unlike in the minimal immersions case, if M satisfies the hy-
potheses from Theorem 3.3, then there exists a unique biconservative immersion
in N3(c) (up to an isometry of N3(c)), and not a one-parameter family.

The characterization theorem can be equivalently rewritten as below.

Theorem 3.5. Let (Mz,g) be an abstract surface with Gaussian curvature K
satisfying ¢ — K(p) > 0 and (grad K)(p) # 0 at any point p € M, where ¢ € R
is a constant. Let X; = (grad K)/|grad K| and Xy € C(TM) be two vector
fields on M such that {X1(p), X2(p)} is a positively oriented basis at any point
of p € M. Then, the following conditions are equivalent:

(a) the level curves of K are circles in M with constant curvature

3| grad K| 3XhK
o — _ :
8(c—K) 8(c—K)’

(b)
3X,K

X2 (XlK) =0 and VXZXQ = m

X1;
(¢) locally, the metric g can be written as g = (¢ — K)~3/4 (du? + dv?), where
(u,v) are local coordinates positively oriented, K = K(u), and K' > 0;

(d) locally, the metric g can be written as g = €*# (du® 4 dv?), where (u,v) are
local coordinates positively oriented, and ¢ = p(u) satisfies the equation

Q= e 20/3 _ ce2¢ (3.9)
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and the condition ¢’ > 0; moreover, the solutions of the above equation,

u=u(yp), are
@
dr n
u = Ug,
o V—=3e=27/3 —ce2™ +q

where @ is in some open interval I and a,ug € R are constants;

(e) locally, the metric g can be written as g = €% (du® + dv?), where (u,v) are
local coordinates positively oriented, and ¢ = p(u) satisfies the equation

"

30" + 20/ 0" + 8ce?P ' =0 (3.10)

and the conditions ¢’ > 0 and ¢+ e~ 2?¢" > 0; moreover, the solutions of
the above equation, uw = u(y), are

©
dr n
u = Ug,
o V=3be=27/3 — ¢e27 + ¢

where  is in some open interval I and a,b,uy € R are constants, b > 0.

The proof follows by direct computations and by using Remark 4.3 in [9]
and Proposition 3.4 in [21].

Remark 3.6. From the above theorem we have the following remarks.

(i) If condition (a) is satisfied, i.e., the integral curves of X are circles in
M with a precise constant curvature, then the integral curves of X; are
geodesics of M.

(ii) If condition (c) is satisfied, then K has to be a solution of the equation
3K"(c— K) +3(K')’ +8K(c— K)»* =0.
(ili) If condition (c) is satisfied and ¢ > 0, then (M2, (c — K)3/4g) is a flat
surface and, trivially, a Ricci surface with respect to c.

(iv) Let ¢ = ¢(u) be a solution of equation (3.10). We consider the change of
coordinates

(u,0) = (et + B, 00 + ),
where a € R is a positive constant and 8 € R, and define
¢ = (at+ B)+loga.

Then g = €*? (du? + dv*) and ¢ also satisfies equation (3.10). If ¢ = ¢(u)
satisfies the first integral

4,0// — bef2<p/3 _ Ce2<,o7
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where b > 0, then, for « = b=3/8, ¢ = ¢ (u) satisfies
¢// — e—2¢/3 _ ce2q>_

From here, as the classification is done up to isometries, we note that
the parameter b in the solution of (3.10) is not essential and only the
parameter a counts. Thus we have a one-parameter family of solutions.

(v) If ¢ is a solution of (3.10), for some ¢, then ¢ + «, where « is a real
constant, is a solution of (3.10) for ce?*.

(vi) If ¢ = 0, we note that if ¢ is a solution of (3.10), then also ¢ + constant
is a solution of the same equation, i.e, condition (a) from Theorem 3.5 is
invariant under the homothetic tranformations of the metric g. Then, we
see that equation (3.10) is invariant under the affine change of parameter
u = ati + (, where a > 0. Therefore, we must solve equation (3.10) up to
this change of parameter and an additive constant of the solution ¢. The
additive constant will be the parameter that counts.

In the ¢ = 0 case, the solutions of equation (3.10), are explicitly determined
in the next proposition.

Proposition 3.7 ([21]). The solutions of the equation

3%0”’ +2§0/SON — O

which satisfy the conditions ¢’ > 0 and ¢" > 0, up to affine transformations of
the parameter with o > 0, are given by

p(u) = 3log(coshu) + constant, u > 0.

We note that, when ¢ = 0, we have a one-parameter family of solutions of
equation (3.10), i.e., go, = Co(coshu)® (du® + dv?), Cy being a positive con-
stant.

If ¢ # 0, then we can not determine explicitly ¢ = p(u). Another way to
see that in the ¢ # 0 case we have only a one-parameter family of solutions of
equation (3.10) is to rewrite the metric ¢ in certain non-isothermal coordinates.

Further, we will consider only the ¢ = 1 case and we have the next result.

Proposition 3.8 ([21]). Let (M2, g) be an abstract surface with g = e (du®+
dv?), where u = u(yp) satisfies

©
dr n
u = Uo,
o V=3be=27/3 —¢27 1+ g

where p is in some open interval I, a,b € R are positive constants, and ug € R
s a constant. Then (M2,g) s 1isometric to

3
& (-6 +3C1€7 - 3)

e + 1d02> ,

<D017gCI = 52
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where De, = (&01,802) X R, Cy € (4/ (33/2) ,oo) is a positive constant, and &gy
and Euy are the positive vanishing points of —&3/3+3C162 =3, with 0 < &1 < &oa.

Remark 3.9. Let us consider

D _ 3
C1,901 = 52 (758/34»30152 73)

de? + ;dQQ)

and

3
Decy, g0 = = - =
& (=88 + 30182 = 3)
The surfaces (D¢, ,9¢,) and (DC{7 gC{) are isometric if and only if C; = Cj

and the isometry is ©(&,0) = (£, +6 + constant). Therefore, we have a one-
parameter family of surfaces.

de? + L g
52

Remark 3.10. We note that the expression of the Gaussian curvature of
(De¢y, 9c,) does not depend on Cy. More precisely,

1
Kcl (67 9) = _§§8/3 + L

But, if we change further the coordinates (£, 60) = (501 + & (02 — 1) ,é), then
we “fix” the domain, i.e., (D¢, gc, ) is isometric to ((0, 1), go, ) and C; appears
in the expression of K¢, (é, 6).

4 COMPLETE BICONSERVATIVE SURFACES IN
RB

In this section we consider the global problem and construct complete biconser-
vative surfaces in R? with f > 0 everywhere and grad f # 0 at any point of an
open dense subset. Or, from intrinsic point of view, we construct a complete
abstract surface (M 2 g) with K < 0 everywhere and grad K # 0 at any point
of an open dense subset of M, that admits a biconservative immersion in R3,
defined on the whole M, with f > 0 on M and | grad f| > 0 on the open dense
subset.

First, we recall a local extrinsic result which provides a characterization of
biconservative surfaces in R3.

Theorem 4.1 ([13]). Let M? be a surface in R? with f(p) > 0 and (grad f)(p) #
0 for any p € M. Then, M is biconservative if and only if, locally, it is a
surface of revolution, and the curvature k = k(u) of the profile curve o = o(u),
|o’(u)] =1, is a positive solution of the following ODE



In [5] there was found the local explicit parametric equation of a biconser-
vative surface in R3.

Theorem 4.2 ([5]). Let M? be a biconservative surface in R with f(p) > 0 and
(grad f)(p) # 0 for any p € M. Then, locally, the surface can be parametrized
by

X¢,(p,v) = (peosv, psinv, ug, (p))

3 o [= 1 N ; -
w6 = g (o1 o (g 4 )
0

with Cy a positive constant and p € <C~'0_3/2, oo).

We denote by S, the image X5 ((6’63/2, oo) X R) . We note that any two

such surfaces are not locally isometric, so we have a one-parameter family of
biconservative surfaces in R?. These surfaces are not complete.

Remark 4.3. If p : M? — R? is a biconservative surface with f > 0 and
grad f # 0 at any point, then there exists a unique Cy such that (M) C Sé,-
Indeed, any point admits an open neighborhood which is an open subset of
some Sg . Let us consider pg € M. Then, there exists a unique Cy such that
pU) C Sg,» where U is an open neighborhood of pg. If A denotes the set of all
points of M such that they admit open neighborhoods which are open subsets
of that S , then the set A is non-empty, open and closed in M. Thus, as M is
connected, it follows that A = M.

The “boundary” of Sg , ie., gé‘o \S@O, is the circle
(C~’0_3/2 cos v, 6‘0_3/2 sinw, 0) ,

which lies in the Ozy plane. At a boundary point, the tangent plane to the
closure S, of Sg, is parallel to Oz. Moreover, along the boundary, the mean

curvature function is constant fs = (25’3/ 2) /3 and grad fe, = 0.
Thus, in order to obtain a complete biconservative surface in R, we can
expect to “glue” along the boundary two biconservative surfaces of type S@o

corresponding to the same Cy (the two constants have to be the same) and
symmetric to each other, at the level of C'*° smoothness.

In fact, it was proved that we can glue two biconservative surfaces S and
Sé(,), at the level of C'°° smoothness, only along the boundary and, in this case,

Co = Cj.
Proposition 4.4 ([19, 21]). If we consider the symmetry of Graf uc, with re-

spect to the Op(= Ox) axis, we get a smooth, complete, biconservative surface
Sg, n R3. Moreover, its mean curvature function f&, is positive and grad fs,

1s different from zero at any point of an open dense subset of 5@0.
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Remark 4.5. The profile curve o = (p, 0,ug, () = (p, ug, (p)) can be re-
parametrized as

oc,0) = (0% (0),0% (6))

G (0 + 1723 (VP 0+1og (VE+VIFT))).  0>0,
(4.1)
and now Xg = Xg (0, 0).

Proposition 4.6. The homothety of R3, (1,y,2) — C’O(:c, y,z), renders Sy onto

Séo—z/z .

In [21], there were also found the complete biconservative surfaces in R? with
f > 0 at any point and grad f # 0 at any point of an open dense subset, but
there, the idea was to use the intrinsic characterization of the biconservative
surfaces. More precisely, we have the next global result.

Theorem 4.7 ([21]). Let (Rz,gco = C (coshu)’ (du? +dv2)) be a surface,
where Cy € R is a positive constant. Then we have:

(a) the metric on R? is complete;
(b) the Gaussian curvature is given by

3 , 24 sinhu

—— <0, K;(@Wu)=——"—,
Cy (coshu)® ca(t) Cy (cosh u)’

Kco(uvv) = Kco(u) = -
and therefore grad K¢, # 0 at any point of R? \ Ov;
(c) the immersion ¢c, : (R?, gc,) — R? given by
wo, (u,v) = (Ué'o (u) cos(3v), O'évo (u) sin(?w),o%o (u))
is biconservative in R3, where
vCy vCo
3 2

1
(coshu)?, og, (u) = (2 sinh(2u) + u) , u € R.

g, (1) =

Sketch of the proof. The first two items follow by standard arguments. For the
last part, we note that choosing Cy = (9/Cp)'/3 in (4.1) and using the change
of coordinates (0,v) = ((sir1hu)2,3v)7 where v > 0, the metric induced by
X(9/cy)y1/s coincides with go,. Then, we define ¢¢, as: for u > 0, ¢, (u,v) is
obtained by rotating the profile curve

0'+ 1/3U:O'913U: 0'1 1311,,0'2 13U s
9= (= (o)
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and for u < 0, ¢, (u, v) is obtained by rotating the profile curve

azl)l/3(U) = (Utcg)l/s(—u), —Uzg)lm(—u)) .
O

By simple transformations of the metric, (RQ, gCO) becomes a Ricci surface
or a surface with constant Gaussian curvature.

Theorem 4.8. Consider the surface (R2,gco), Then (Rz, \/—Kcogco) s com-
plete, satisfies the Ricci condition and can be minimally immersed in R? as a
helicoid or a catenoid.

Proposition 4.9. Consider the surface (R?, gc,). Then (R* —Kc,gc,) has
constant Gaussian curvature 1/3 and it is not complete. Moreover, (RQ, —Kc¢, gco)
is the universal cover of the surface of revolution in R? given by

Z(u,v) = (a(u) cosh <\/§v> , a(u) sinh (?v) ,B(u)) ) (u,v) € R?,

a

where a € (0,+/3] and

\/ —a?) cosh? 7 + a2
a(u) = dr.
Coshu cosh? 7

Remark 4.10. When a = /3, the immersion Z has only umbilical points and
the image Z (RQ) is the round sphere of radius v/3, without the North and the
South poles. Moreover, if a € (0,+/3), then Z has no umbilical points.

Concerning the biharmonic surfaces in R? we have the following non-existence
result.

Theorem 4.11 ([6, 8]). There exists no proper biharmonic surface in R3.

5 COMPLETE BICONSERVATIVE SURFACES IN
83

As in the previous section, we consider the global problem for biconservative
surfaces in S2, i.e., our aim is to construct complete biconservative surfaces in
S? with f > 0 everywhere and grad f # 0 at any point of an open and dense
subset.

We start with the following local, extrinsic result.
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Theorem 5.1 ([5]). Let M? be a biconservative surface in S* with f(p) > 0
and (grad f)(p) # 0 at any point p € M. Then, locally, the surface, viewed in
R*, can be parametrized by

ém;l\/);/él (fi(cosv—1)+ fysinv),
1

where Cy € (64/ (35/4 ,oo) is a positive constant; f,, fo € R* are two constant
orthonormal vectors; o(u) is a curve parametrized by arclength that satisfies

Yo, (u,v) = o(u) +

1

o). F :4n(u)*3/4 _
< ( )af1> 3\/671 )

and, as a curve in S?, its curvature k = k() is a positive non constant solution
of the following ODE

4
Kk = Z ()2 + gnz — 4k*
such that

1 .
(k) = —56/3 —16x* + C167/2.

Remark 5.2. The constant C; determines uniquely the curvature , up to a

translation of u, and then «, f; and f, determines uniquely the curve o.

We consider f, =3 and f, = €, and change the coordinates (u,v) in (k,v).
Then, we get

veteen = (1= () comton 1= (o) st

4 ,.—3/4 4 ,.—3/4

—K cos v, \Ffi

3 \Y4 C1 3 Cl

sinwv |,

(5.1)
where (k,v) € (Ko1, ko2) X R, ko1 and ko2 are positive solutions of

1 _
7—6/12 —165*+ 172 =0
and
" Crr3/4
1(k) = ﬂos/ - o dr + co,
ko (—16+9Ci74/2) \J9C1™/2 — 16(1 + 972)

with ¢ € R a constant and kg € (ko1,k02). We note that an alternative
expression for Y was given in [11].

Remark 5.3. The limits lim,\ .o, (k) = @ (ko1) and limy .., p(k) = 1 (Ko2)
are finite.
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Remark 5.4. For simplicity, we choose xo = (3C} /64)2.

If we denote Sg, the image of Yz , then we note that the boundary of S5 is
made up from two circles and along the boundary, the mean curvature function
is constant (two different constants) and its gradient vanishes. More precisely,
the boundary of SCH is given by the curves

2 2
3/4 —3/4 .
<\/1—< 4Cl,1<,01/ ) COSM(HOl),\/l— <3 461/4,01/ ) sln,U,(K()l),

4_ =3/ cos 0, —4 k4 sinw
& o1 e, ot

and

2 2
—3/4 3/4\ .
3\%1"502/ ) cos pu (Ko2) , \/1 - <3f’£02/ ) sin  (Ko2) ,

4 —3/4 4 —3/4
K2 sinw |.

= cos v, 3\/67502

These curves are circles in affine planes in R* parallel to the Ox32* plane and
their radii are (4&0 3/4) (3\/ ) and (4&0 3/4) / (3\/ C’l), respectively.

At a boundary point, using the coordinates (u,v), we get that the tangent
plane to the closure of Si is spanned by a vector which is tangent to the
corresponding circle and by

_\/1 - (3\;#5;/4)28111“%),\/1 (

where ¢ =1 or ¢ = 2.
Thus, in order to construct a complete biconservative surface in S®, we can
expect to glue along the boundary two biconservative surfaces of type Sg , corre-

2
4 —3/4 _
3\/C~Tll€0i > Ccos (’{01) ) 0, 0 )

sponding to the same Cy. In fact, if we want to glue two surfaces corresponding
to Cy and Cl along the boundary, then these constants have to coincide and
there is no ambiguity concerning along which circle of the boundary we should
glue the two pieces. But this process is not as clear as in R? since we should
repeat it infinitely many times.

Further, as in the R® case, we change the point of view and use the intrinsic
characterization of the biconservative surfaces in S3.

The surface (D¢, , gc,) defined in Section 3 is not complete but it has the
following properties.

Theorem 5.5 ([21]). Consider (D¢, gc,). Then, we have
(a) Kc,(§,0) = K(£,0),
SK(E0) = g0, K(Q) = -6
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and grad K # 0 at any point of D¢, ;

(b) the immersion ¢c, : (Dc,,g9c,) — S® given by

(1 ‘ 1 in cos(+v/C10) sin(v/C10)
¢C1(§70)_( 1 0152 COSC(ﬁ), 1 01525 <(£)7 \/@E s \/@5

is biconservative in S, where

13
4/3
(&) ==+ o dr+ e,
oo (1 C172)\/—78/3 430172 - 3

with ¢; € R a constant and £yo € (€01, &02)-

Sketch of the proof. The first item follows by standard arguments. For the
second item, we note that choosing C; = 3%/4.16C; in (5.1) and using the
change of coordinates (k,v) = (3*3/254/3, (3’”&/@0) /4), the metric induced
by Y31/4.16¢, coincides with gc, .

Then, we define ¢¢, as

_ 3-1/8,/C10
b, (§,0) = Ys1/4.46¢, (3 3/254/37 41) .

O

Remark 5.6. The limits limes ¢, (&) = ¢ (§01) and limg xg,, C(§) = ¢ (€o2) are
finite.

Remark 5.7. For simplicity, we choose £yo = (9C4 /4)3/2.

Remark 5.8. The immersion ¢¢, depends on the sign £ and on the constant
c1 in the expression of ¢. As the classification is up to isometries of S, the sign
and the constant are not important, but they will play an important role in the
gluing process.

The construction of complete biconservative surfaces in S® consists in two
steps, and the key idea is to notice that (D¢, gc,) is, locally and intrinsically,
isometric to a surface of revolution in R3.

The first step is to construct a complete surface of revolution in R? which
on an open dense subset is locally isometric to (D¢, gc,). We start with the
next result.

Theorem 5.9 ([21]). Let us consider (D¢, ,gc,) as above. Then (D¢, gc,) is
the universal cover of the surface of revolution in R3 given by

bew.os (6,0) = (x(é“) C‘f A(€) sin (ff V(f)) 7 (5.2)
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where x (&) = CT /€,

32 — C* —78/3 4 3C 72 — 3)
d T, 5.3
/ \/ 7.4 7.8/3 +30,72 — 3) T+ (5.3)

Ci e (07 (Cr - 4/33/2)71/2) is a positive constant and ¢ € R is constant.

Remark 5.10. The immersion 9¢, ¢y depends on the sign + and on the con-
stant cj in the expression of v. We denote by Sjccl,cl*,c; the image of ¥c, c:.

Remark 5.11. The limits limg ¢, ¥(§) = v (&o1) and limg ne, v(§) = v (€o2)
are finite.

We note that the boundary of Sa’cf,cf is given by the curves

i 0 Ci )
<501 cos cy’ 501 C*’ v (6o1)

Cf o 0 G gy ¥
(&J e S (502)>

These curves are circles in affine planes in R3 parallel to the Oxy plane and
their radii are Cf /&1 and Cf /&pe, respectively.

At a boundary point, using the coordinates (v, 6), we get that the tangent
plane to the closure of Sa,Cl*,cf is spanned by a vector which is tangent to

and

the corresponding circle and by the vector (0,0,1). Thus, the tangent plane is
parallel to the rotational axis Oz.
Geometrically, we start with a piece of type Sa Cr et and by symmetry to

the planes where the boundary lie, we get our complete surface §01,0{5 the
process is periodic and we perform it along the whole Oz axis.

Analytically, we fix C; and C7, and alternating the sign and with appropriate
choices of the constant c¢], we can construct a complete surface of revolution
gcl,c*; in R? which on an open subset is locally isometric to (D¢, , gc, ). In fact,
these choices of + and —, and of the constants ¢j are uniquely determined by
the “first” choice of 4, or of —, and of the constant ¢j. We start with + and
c; =0.

The profile curve of Sa,ci‘ o can be seen as the graph of a function depend-
ing on v and this allows us to obtain a function F' such that the profile curve
of SCH,C; to be the graph of the function x o F' depending on v and defined on
the whole Oz (or Ov). The function F : R — [£p1, 02| is periodic and at least
of class C3.

Theorem 5.12 ([21]). The surface of revolution given by

Vo, 0r(v,0) = ((XOF)(I/)COS 0 (x o F)(v)sin g*, ), (v,0) € R?,

)
oy
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is complete and, on an open dense subset, it is locally isometric to (D¢, 9o, )-
The induced metric is given by

3F?(v) 2 1 2
3F2(v) — (CF)? (—=F3/3(v) + 3CL F2(v) — 3)d 0 v

gc,.c;(v,0) =

(v,0) € R2. Moreover, grad K # 0 at any point of that open dense subset, and
1 — K > 0 everywhere.

From Theorem 5.12 we easily get the following result.

Proposition 5.13 ([21]). The universal cover of the surface of revolution given
by Ve, cr is R? endowed with the metric gc,,c; - It is complete, 1—K > 0 on R2
and, on an open dense subset, it is locally isometric to (D¢, , gc,) and grad K #
0 at any point. Moreover any two surfaces (Rz,gclycf) and (RQ,gcl,Cl*') are
1sometric.

The second step is to construct effectively the biconservative immersion from
(R%, gc, ,Cf) in S3, or from Scl,c; in S3. The geometric ideea of the construction
is the following: from each piece Saﬁcfycf{ of SCl,Cl* we “go back” to (D¢, g9c,)
and then, using ¢, and a specific choice of + or — and of the constant c;, we
get our biconservative immersion ®¢, cr. Again, the choices of + and —, and
of the constant ¢; are uniquely determined (modulo 27, for ¢;) by the “first”
choice of +, or of —, and of the constant ¢; (see [21] for all details).

Some numerical experiments suggest that ®¢, ¢y is not periodic and it has
self-intersections along circles parallel to Oz3z*.

The projection of ®¢, cr on the Oz'2? plane is a curve which lies in the
annulus of radii /1 — 1/ (C1&2,) and /1 — 1/ (C1£2,). It has self-intersections
and is dense in the annulus.

Concerning the biharmonic surfaces in S* we have the following classification
result.

Theorem 5.14 ([4]). Let ¢ : M? — S3 be a proper biharmonic surface. Then
(M) is an open part of the small hypersphere S?(1/1/2).

APPENDIX

In the ¢ = 0 case, the idea was to construct, by symmetry, a complete bicon-
servative surface in R? starting with a piece of a biconservative surface. We
illustrate this in the following figure obtained for Cy = 1.
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In the ¢ = 1 case, the construction of a complete biconservative surface in
S? can be summarized in the next diagram, obtained for C; = Cf =1, ¢f = 0
and we started with + in the expression of v.
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ISOMETRY

v

501 502 f

ISOMETRY T |

-
wchcf - QZ}CI,C{‘,C’{

playing with the constant
¢ and +

P0¢ — 1o
:F
HALLVAYISNODIL

gCuCl* C R3 complete

The projection of ®; 1 on the Oz'2? plane is represented in the next figure
(Cl = O)
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_ The last two figures represent the signed curvature of the profile curve of
Sc,,c» and the signed curvature of the curve obtained projecting ®;; on the
Oz'z? plane.
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