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Abstract. We construct a special class of Lorentz surfaces in the pseudo-
Euclidean 4-space with neutral metric which are one-parameter systems of
meridians of rotational hypersurfaces with lightlike axis and call them merid-
ian surfaces. We give the complete classification of the meridian surfaces
with constant Gauss curvature and prove that there are no meridian surfaces
with parallel mean curvature vector field other than CMC surfaces lying in a
hyperplane. We also classify the meridian surfaces with parallel normalized
mean curvature vector field. We show that in the family of the meridian
surfaces there exist Lorentz surfaces which have parallel normalized mean
curvature vector field but not parallel mean curvature vector.
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1 Introduction

A fundamental problem of the contemporary differential geometry of surfaces
and hypersurfaces in standard model spaces such as the Euclidean space En
and the pseudo-Euclidean space Enk is the investigation of the basic invariants
characterizing the surfaces. Curvature invariants are the number one Rieman-
nian invariants and the most natural ones. The basic intrinsic curvature invari-
ant of a surface in 4-dimensional Euclidean or pseudo-Euclidean space is the
Gauss curvature and one basic extrinsic invariant is the curvature of the normal
connection. The most important normal vector field of a surface is the mean
curvature vector field. So, a fundamental question is to investigate various im-
portant classes of surfaces characterized by conditions on the Gauss curvature,
the normal curvature, or the mean curvature vector field, and to find examples
of surfaces belonging to these classes.

Rotational surfaces and hypersurfaces are basic source of examples of many
geometric classes of surfaces in Riemannian and pseudo-Riemannian geometry.
The main purpose of this paper is to provide a comprehensive survey on a
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special class of surfaces (called meridian surfaces) in 4-dimensional Euclidean
or pseudo-Euclidean spaces which are one-parameter systems of meridians of
rotational hypersurfaces. We present briefly recent results on meridian surfaces
in the Euclidean space E4 and the Minkowski space E4

1.
In the present paper, the new contribution to the theory of meridian surfaces

is the construction of 2-dimensional Lorentz surfaces in the pseudo-Euclidean
space E4

2 which are one-parameter systems of meridians of a rotational hyper-
surface with lightlike axis. They are analogous to the meridian surfaces lying on
rotational hypersurfaces with spacelike or timelike axis in E4

2 which have been
studied in [3] and [4]. We show that all meridian surfaces are surfaces with flat
normal connection and classify completely the meridian surfaces with constant
Gauss curvature (Theorem 4.1 and Theorem 4.2). In Theorem 5.1 we give the
classification of the meridian surfaces with parallel mean curvature vector field
H. Theorem 6.1 describes all meridian surfaces which have parallel normalized
mean curvature vector field but not parallel H.

2 Preliminaries

Let E4
2 be the 4-dimensional pseudo-Euclidean space with the canonical pseudo-

Euclidean metric of index 2 given in local coordinates by

g̃ = dx21 + dx22 − dx23 − dx24,

where (x1, x2, x3, x4) is a rectangular coordinate system of E4
2. Denote by 〈., .〉

the indefinite inner scalar product associated with g̃. Since g̃ is an indefinite
metric, a vector v ∈ E4

2 can have one of the three casual characters: spacelike if
〈v, v〉 > 0 or v = 0, timelike if 〈v, v〉 < 0, and lightlike if 〈v, v〉 = 0 and v 6= 0.
This terminology is inspired by general relativity and the Minkowski 4-space
E4
1.

We use the following standard denotations:

S32(1) =
{
V ∈ E4

2 : 〈V, V 〉 = 1
}

;

H3
1(−1) =

{
V ∈ E4

2 : 〈V, V 〉 = −1
}
.

The space S32(1) is known as the de Sitter space, and the space H3
1(−1) is the

anti-de Sitter space [22].
A surface M in E4

2 is called Lorentz, if 〈., .〉 induces a Lorentzian metric g on
M , i.e. at each point p ∈M we have the following decomposition

E4
2 = TpM ⊕NpM

with the property that the restriction of the metric onto the tangent space TpM
is of signature (1, 1), and the restriction of the metric onto the normal space
NpM is of signature (1, 1).
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Denote by ∇ and ∇ the Levi-Civita connections of M and E4
2, respectively.

For any tangent vector fields X,Y and any normal vector field ξ, the Gauss
formula and the Weingarten formula are given by

∇XY = ∇XY + h(X,Y ),

∇Xξ = −AξX +DXξ,

where h is the second fundamental form of M , D is the normal connection on
the normal bundle, and Aξ is the shape operator with respect to ξ.

The mean curvature vector field H of M in E4
2 is defined as H =

1

2
trh. A

surface M is called minimal if its mean curvature vector vanishes identically,
i.e. H = 0. A natural extension of minimal surfaces are quasi-minimal surfaces.
A surface M is called quasi-minimal (or pseudo-minimal) if its mean curvature
vector is lightlike at each point, i.e. H 6= 0 and 〈H,H〉 = 0. In the Minkowski
space E4

1 the quasi-minimal surfaces are also called marginally trapped. This
notion is borrowed from general relativity. A surface M is said to have constant
mean curvature if 〈H,H〉 = const. We shall consider Lorentz surfaces in E4

2 for
which 〈H,H〉 = const 6= 0. Such surfaces we call CMC surfaces.

A normal vector field ξ on M is called parallel in the normal bundle (or
simply parallel) if Dξ = 0 holds identically [7]. A surface M is said to have
parallel mean curvature vector field if its mean curvature vector H satisfies
DH = 0.

Surfaces for which the mean curvature vector field H is non-zero, 〈H,H〉 6= 0,
and there exists a unit vector field H0 in the direction of the mean curvature
vector H, such that H0 is parallel in the normal bundle, are called surfaces with
parallel normalized mean curvature vector field [6]. It is easy to see that if M is
a surface with non-zero parallel mean curvature vector field H (i.e. DH = 0),
then M is a surface with parallel normalized mean curvature vector field, but
the converse is not true in general. It is true only for surfaces with ‖H‖ = const.

3 Construction of Meridian Surfaces

in Pseudo-Euclidean 4-Space

Meridian surfaces in the Euclidean 4-space E4 we defined in [15] as one-parameter
systems of meridians of the standard rotational hypersurface in E4. The classifi-
cation of meridian surfaces with constant Gauss curvature, with constant mean
curvature, Chen meridian surfaces and meridian surfaces with parallel normal
bundle is given in [15] and [17]. The meridian surfaces in E4 with pointwise
1-type Gauss map are classified in [1]. The idea from the Euclidean space is
used in [16], [18], and [19] for the construction of meridian spacelike surfaces
lying on rotational hypersurfaces in E4

1 with timelike, spacelike, or lightlike axis.
The classification of marginally trapped meridian surfaces is given in [16] and
[19]. Meridian surfaces in E4

1 with pointwise 1-type Gauss map are classified in
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[2]. The classification of meridian surfaces with constant Gauss curvature, with
constant mean curvature, Chen meridian surfaces and meridian surfaces with
parallel normal bundle is given in [18] and [20].

Following the idea from the Euclidean and Minkowski spaces, in [3] and [4]
we constructed Lorentz meridian surfaces in the pseudo-Euclidean 4-space E4

2

as one-parameter systems of meridians of rotational hypersurfaces with timelike
or spacelike axis. We gave the classification of quasi-minimal meridian surfaces
and meridian surfaces with constant mean curvature [3]. The classification of
meridian surfaces with parallel mean curvature vector field and the classification
of meridian surfaces with parallel normalized mean curvature vector is given in
[4].

In the present paper we construct Lorentz meridian surfaces in E4
2 which are

one-parameter systems of meridians of rotational hypersurfaces with lightlike
axis.

Let Oe1e2e3e4 be a fixed orthonormal coordinate system in E4
2, i.e. 〈e1, e1〉 =

〈e2, e2〉 = 1, 〈e3, e3〉 = 〈e4, e4〉 = −1. We denote ξ1 =
e2 + e4√

2
, ξ2 =

−e2 + e4√
2

and consider the pseudo-orthonormal base {e1, e3, ξ1, ξ2} of E4
2. Note that

〈ξ1, ξ1〉 = 0, 〈ξ2, ξ2〉 = 0, 〈ξ1, ξ2〉 = −1.
A rotational hypersurface with lightlike axis in E4

2 can be parametrized by

M : Z(u,w1, w2) = f(u)w1(coshw2e1+sinhw2e3)+(f(u)
(w1)2

2
+g(u))ξ1+f(u)ξ2,

where f = f(u), g = g(u) are smooth functions, defined in an interval I ⊂ R
and f(u) > 0, u ∈ I.

Let w1 = w1(v), w2 = w2(v), v ∈ J, J ⊂ R and consider the surfaceMm in
E4
2 given by

Mm : z(u, v) = Z(u,w1(v), w2(v)), (3.1)

where u ∈ I, v ∈ J. The surfaceMm, defined by (3.1), is a one-parameter system
of meridians of the rotational hypersurface M. So, we call Mm a meridian
surface on M.

Without loss of generality we can assume that w1 = ϕ(v), w2 = v. Then
the meridian surface Mm is parametrized as follows:

Mm : z(u, v) = f(u)(ϕ(v) cosh v e1 + ϕ(v) sinh v e3 +
ϕ2(v)

2
ξ1 + ξ2) + g(u) ξ1.

(3.2)

If we denote l(v) = ϕ(v) cosh v e1 + ϕ(v) sinh v e3 +
ϕ2(v)

2
ξ1 + ξ2, then the para-

metrization (3.2) is written as

Mm : z(u, v) = f(u) l(v) + g(u) ξ1.

Now we shall find the coefficients of the first fundamental form ofMm. The
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tangent vector fields zu and zv are

zu = f ′ϕ cosh v e1 + f ′ϕ sinh v e3 +

(
f ′
ϕ2

2
+ g′

)
ξ1 + f ′ ξ2;

zv = f(ϕ̇ cosh v + ϕ sinh v) e1 + f(ϕ̇ sinh v + ϕ cosh v) e3 + fϕϕ̇ ξ1,
(3.3)

where ϕ̇ denotes the derivative of ϕ with respect to v. So, the coefficients of the
first fundamental form are

E = −2f ′(u)g′(u); F = 0; G = f2(u)(ϕ̇2(v)− ϕ2(v)).

Since we are studying Lorentz surfaces, in the case ϕ̇2(v)−ϕ2(v) > 0 we assume
that f ′(u)g′(u) > 0; in the case ϕ̇2(v)−ϕ2(v) < 0 we assume that f ′(u)g′(u) < 0.

We shall consider the tangent frame field defined by X =
zu√

2εf ′g′
, Y =

zv

f
√
ε(ϕ̇2 − ϕ2)

, where ε = 1 in the case ϕ̇2 − ϕ2 > 0, f ′g′ > 0, and ε = −1

in the case ϕ̇2 − ϕ2 < 0, f ′g′ < 0. Thus we have 〈X,X〉 = −ε, 〈Y, Y 〉 = ε,
〈X,Y 〉 = 0. Let us choose the following normal frame field:

n1 =

√
εf ′

2g′

(
ϕ cosh v e1 + ϕ sinh v e3 +

f ′ϕ2 − 2g′

2f ′
ξ1 + ξ2

)
;

n2 =
1√

ε(ϕ̇2 − ϕ2)

(
(ϕ̇ sinh v + ϕ cosh v) e1 + (ϕ̇ cosh v + ϕ sinh v) e3 + ϕ2 ξ1

)
,

(3.4)
which satisfies 〈n1, n1〉 = ε, 〈n2, n2〉 = −ε, 〈n1, n2〉 = 0. Taking into account
(3.3), we calculate the second partial derivatives of z(u, v):

zuu = f ′′ϕ cosh v e1 + f ′′ϕ sinh v e3 +

(
f ′′
ϕ2

2
+ g′′

)
ξ1 + f ′′ ξ2;

zuv = f ′(ϕ̇ cosh v + ϕ sinh v) e1 + f ′(ϕ̇ sinh v + ϕ cosh v) e3 + f ′ϕϕ̇ ξ1;

zvv = f ((ϕ̈+ ϕ) cosh v + 2ϕ̇ sinh v) e1 + f ((ϕ̈+ ϕ) sinh v + 2ϕ̇ cosh v) e3

+f
(
ϕ̇2 + ϕϕ̈

)
ξ1.

The last equalities together with (3.4) imply

〈zuu, n1〉 =
f ′′g′ − g′′f ′√

2εf ′g′
; 〈zuu, n2〉 = 0;

〈zuv, n1〉 = 0; 〈zuv, n2〉 = 0;

〈zvv, n1〉 = −f

√
εf ′

2g′
(ϕ̇2 − ϕ2); 〈zvv, n2〉 = f

ϕϕ̈− 2ϕ̇2 + ϕ2√
ε(ϕ̇2 − ϕ2)

.
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Hence, we obtain

h(X,X) = ε
f ′′g′ − g′′f ′

(2εf ′g′)
3
2

n1;

h(X,Y ) = 0;

h(Y, Y ) = − 1

f

√
εf ′

2g′
n1 − ε

ϕϕ̈− 2ϕ̇2 + ϕ2

f(ε(ϕ̇2 − ϕ2))
3
2

n2.

(3.5)

Now, we shall consider the parametric lines of the meridian surface Mm.
The parametric u-line v = v0 = const is given by

cu : z(u) = cαf(u) e1 + cβf(u) e3 +

(
c2

2
f(u) + g(u)

)
ξ1 + f(u) ξ2,

where α = cosh v0, β = sinh v0, c = ϕ(v0). So, the unit tangent vector field tcu
of cu is:

tcu =
1√

2εf ′g′

(
cαf ′ e1 + cβf ′ e3 +

(
c2

2
f ′ + g′

)
ξ1 + f ′ ξ2

)
.

We denote by s the arc-length of cu and calculate the derivative

dtcu
ds

=
t′cu
s′

=
ε(f ′′g′ − g′′f ′)

(2εf ′g′)2

(
cαf ′ e1 + cβf ′ e3 +

(
c2

2
f ′ − g′

)
ξ1 + f ′ ξ2

)
.

Thus we obtain that the curvature of cu is
ε(f ′′g′ − g′′f ′)

(2εf ′g′)
3
2

. Finally, for each

v = const the parametric lines cu are congruent in E4
2. These curves are the

meridians of Mm. We denote κm(u) =
ε(f ′′g′ − g′′f ′)

(2εf ′g′)
3
2

.

Now, we shall consider the parametric v-lines of Mm. Let u = u0 = const
and denote a = f(u0), b = g(u0). The corresponding parametric v-line is given
by

cv : z(v) = aϕ(v) cosh v e1 + aϕ(v) sinh v e3 +

(
a
ϕ2(v)

2
+ b

)
ξ1 + a ξ2.

The unit tangent vector field tcv of cv is

tcv =
1√

ε(ϕ̇2 − ϕ2)
((ϕ̇ cosh v + ϕ sinh v) e1 + (ϕ̇ sinh v + ϕ cosh v) e3 + ϕϕ̇ ξ1) .

Knowing the tangent vector field tcv we calculate the curvature κcv of cv and

obtain that κcv =
ϕϕ̈− 2ϕ̇2 + ϕ2

a(ε(ϕ̇2 − ϕ2))
3
2

. We denote κ(v) =
ϕϕ̈− 2ϕ̇2 + ϕ2

(ε(ϕ̇2 − ϕ2))
3
2

. Then,

for each u = u0 = const the curvature of the corresponding parametric v-line is
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expressed as κcv =
1

a
κ(v), where a = f(u0). Actually, κ(v) is the curvature of

the curve

c : l = l(v) = ϕ(v) cosh v e1 + ϕ(v) sinh v e3 +
ϕ2(v)

2
ξ1 + ξ2.

Consequently, formulas (3.5) take the form

h(X,X) = κm n1;

h(X,Y ) = 0;

h(Y, Y ) = − 1

f

√
εf ′

2g′
n1 − ε

κ

f
n2.

(3.6)

It follows from (3.6) that the Gauss curvature K of the meridian surface Mm

is expressed as

K = ε
κm
f

√
εf ′

2g′

and the mean curvature vector field H is given by

H = −ε
2

(
κm +

1

f

√
εf ′

2g′

)
n1 −

κ

2f
n2.

Without loss of generality we can assume that 2εf ′g′ = 1, which implies

κm =
f ′′

f ′
. Hence,

K = ε
f ′′

f
, (3.7)

H = −ε(ff
′′ + (f ′)2)

2ff ′
n1 −

κ

2f
n2. (3.8)

Now, using (3.4) and (3.6) we obtain that

∇Xn1 = κmX; ∇Xn2 = 0;

∇Y n1 =
1

f

√
εf ′

2g′
Y ; ∇Y n2 = −εκ

f
Y.

(3.9)

Hence,
DXn1 = 0; DXn2 = 0;

DY n1 = 0; DY n2 = 0,
(3.10)

where D is the normal connection of the surface. The last equalities imply
that the curvature of the normal connection of Mm is zero. So, we obtain the
following statement.
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Proposition 3.1. The meridian surface Mm, defined by (3.2), is a surface
with flat normal connection.

In the next sections we will give the classification of the meridian surfaces
with constant Gauss curvature, with parallel mean curvature vector field and
with parallel normalized mean curvature vector field.

4 Meridian Surfaces with constant
Gauss curvature

The study of surfaces with constant Gauss curvature is one of the essential topics
in differential geometry. Surfaces with constant Gauss curvature in Minkowski
space have drawn the interest of many geometers, see for example [14], [21], and
the references therein.

LetMm be a meridian surface, defined by (3.2). Then the Gauss curvature
ofMm depends only on the meridian curve m and is expressed by formula (3.7).
First, we shall describe the meridian surfaces with zero Gauss curvature.

Theorem 4.1. Let Mm be a meridian surface, defined by (3.2). Then Mm is
flat if and only if the meridian curve m is given by

f(u) = au+ b; g(u) =
ε

2a
u+ c,

where a = const 6= 0, b = const, c = const. In this case Mm is a developable
ruled surface.

Proof. It follows from (3.7) that K = 0 if and only if f(u) = au + b, a =

const 6= 0, b = const. Using that 2εf ′g′ = 1, we obtain g(u) =
ε

2a
u+ c,

c = const. Since in this case κm = 0, then the meridian curve m is part of a
straight line, i.e. Mm lies on a ruled surface. Moreover, it follows from (3.9)
that ∇Xn1 = 0; ∇Xn2 = 0, which implies that the normal space is constant at
the points of a fixed straight line, and hence the tangent space is one and the
same at the points of a fixed line. Consequently, Mm is part of a developable
ruled surface.

The following theorem describes the meridian surfaces with constant non-
zero Gauss curvature.

Theorem 4.2. Let Mm be a meridian surface, defined by (3.2). Then Mm

has constant non-zero Gauss curvature K if and only if the meridian curve m
is given by

f(u) = α cosh
√
εKu+ β sinh

√
εKu, if εK > 0;

f(u) = α cos
√
−εKu+ β sin

√
−εKu, if εK < 0,

(4.1)
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where α and β are constants, g(u) is defined by g′(u) =
ε

2f ′(u)
.

Proof. Using that the Gauss curvature is expressed by (3.7), we obtain that
K = const 6= 0 if and only if the function f(u) satisfies the following differential
equation

f ′′(u)− εKf(u) = 0.

The general solution of this equation is given by (4.1), where α and β are
constants. Since we assume that 2εf ′g′ = 1, then the function g(u) is determined

by g′(u) =
ε

2f ′(u)
.

5 Meridian surfaces with parallel

mean curvature vector field

Another basic class of surfaces in Riemannian and pseudo-Riemannian geome-
try are surfaces with parallel mean curvature vector field, since they are critical
points of some functionals and play important role in differential geometry, the
theory of harmonic maps, as well as in physics. The classification of surfaces
with parallel mean curvature vector field in Riemannian space forms was given
by Chen [5] and Yau [23]. Recently, spacelike surfaces with parallel mean cur-
vature vector field in pseudo-Euclidean spaces with arbitrary codimension were
classified in [8] and [9]. The classification of quasi-minimal surfaces with paral-
lel mean curvature vector in E4

2 is given in [12]. Lorentz surfaces with parallel
mean curvature vector field in arbitrary pseudo-Euclidean space Ems are studied
in [10] and [13]. A nice survey on classical and recent results on submani-
folds with parallel mean curvature vector in Riemannian manifolds as well as in
pseudo-Riemannian manifolds is presented in [11].

In this section we shall describe the meridian surfaces with non-zero parallel
mean curvature vector field, i.e. H 6= 0 and DH = 0.

Under the assumption 2εf ′g′ = 1 the mean curvature vector field H of the
meridian surface Mm is given by formula (3.8). Using that DXn1 = DY n1 =

DXn2 = DY n2 = 0, and X = zu, Y =
zv

f
√
ε(ϕ̇2 − ϕ2)

, we get

DXH = −ε
2

(
ff ′′ + (f ′)2

ff ′

)′

n1 +
κf ′

2f2
n2;

DYH = − κ′

2f2
√
ε(ϕ̇2 − ϕ2)

n2.
(5.1)

Theorem 5.1. Let Mm be a meridian surface, defined by (3.2). Then Mm

has parallel mean curvature vector field if and only if the curvature of c is κ = 0
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and the meridian curve m is determined by f ′ = φ(f) where

φ(t) =
a t2 + b

2t
, a = const 6= 0, b = const,

g(u) is defined by g′(u) =
ε

2f ′(u)
. In this case Mm is a non-flat CMC surface

lying in a hyperplane of E4
2.

Proof. Using formulas (5.1) we get thatMm has parallel mean curvature vector
field if and only if the following conditions hold(

ff ′′ + (f ′)2

ff ′

)′

= 0;

κf ′ = 0;

κ′ = 0.

(5.2)

Since f ′ 6= 0, the equalities (5.2) imply that κ = 0 and
ff ′′ + (f ′)2

ff ′
= a = const.

If a = 0, then H = 0, i.e. Mm is minimal. Since we consider non-minimal
surfaces, we assume that a 6= 0. In this case the meridian curve m is determined
by the following differential equation:

ff ′′ + (f ′)2 = aff ′, a = const 6= 0. (5.3)

The solutions of the last differential equation can be found as follows. Setting
f ′ = φ(f) in equation (5.3), we obtain that the function φ = φ(t) is a solution
of the equation

φ′ +
1

t
φ = a. (5.4)

The general solution of equation (5.4) is given by

φ(t) =
a t2 + b

2t
, b = const. (5.5)

In this case, the mean curvature vector field H is given by H = −εa
2
n1,

and thus 〈H,H〉 =
εa2

4
= const. Hence, the surface Mm is a CMC surface.

Moreover, since κ = 0, from (3.9) it follows that ∇Xn2 = 0, ∇Y n2 = 0. Hence,
Mm lies in a 3-dimensional constant hyperplane parallel to span{X,Y, n1}. The
Gauss curvature K 6= 0, soMm is a non-flat CMC surface lying in a hyperplane
of E4

2.

Conversely, if the meridian curve m is determined by (5.5), then by direct
computation we get that DXH = DYH = 0, i.e. the surface has parallel mean
curvature vector field.
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Theorem 5.1 shows that each meridian surface with parallel mean curvature
vector field is a CMC surface and lies in a hyperplane of E4

2. So, we have the
following result.

Corollary 5.2. There are no Lorentz meridian surfaces with parallel mean
curvature vector field other than CMC surfaces lying in a hyperplane of E4

2.

Remark. The same result holds true for meridian surfaces lying on rotational
hypersurfaces with spacelike or timelike axis [4].

6 Meridian surfaces with parallel
normalized mean curvature vector

field

The class of surfaces with parallel mean curvature vector field is naturally ex-
tended to the class of surfaces with parallel normalized mean curvature vector
field. A submanifold in a Riemannian manifold is said to have parallel nor-
malized mean curvature vector field if the mean curvature vector is non-zero
and the unit vector in the direction of the mean curvature vector is parallel in
the normal bundle [6]. It is well known that submanifolds with non-zero paral-
lel mean curvature vector field have parallel normalized mean curvature vector
field. But the condition to have parallel normalized mean curvature vector field
is much weaker than the condition to have parallel mean curvature vector field.
For example, every surface in the Euclidean 3-space has parallel normalized
mean curvature vector field but in the 4-dimensional Euclidean space, there
exist abundant examples of surfaces which lie fully in E4 with parallel normal-
ized mean curvature vector field, but not with parallel mean curvature vector
field. In the pseudo-Euclidean space with neutral metric E4

2 the study of Lorentz
surfaces with parallel normalized mean curvature vector field, but not parallel
mean curvature vector field, is still an open problem.

In this section we give the classification of all meridian surfaces which have
parallel normalized mean curvature vector field but not parallel H.

LetMm be a meridian surface, defined by (3.2). The mean curvature vector
field H is given by formula (3.8). We assume that 〈H,H〉 6= 0, i.e. (ff ′′ +
(f ′)2)2 − κ2f ′2 6= 0.

If κ = 0, then the normalized mean curvature vector field is H0 = n1 and in
view of (3.10) we have DXH0 = DYH0 = 0, i.e. H0 is parallel in the normal
bundle. We consider this case as trivial, since under the assumption κ = 0
the surface Mm lies in a 3-dimensional hyperplane of E4

2 and every surface in
3-dimensional space has parallel normalized mean curvature vector field. So,
further we assume that κ 6= 0.

A unit normal vector field in the direction of H is

H0 =
−1√

|(ff ′′ + (f ′)2)2 − κ2f ′2|
(
(ff ′′ + (f ′)2)n1 + κf ′ n2

)
. (6.1)
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For simplicity we denote

A =
−(ff ′′ + (f ′)2)√

|(ff ′′ + (f ′)2)2 − κ2f ′2|
, B =

−κf ′√
|(ff ′′ + (f ′)2)2 − κ2f ′2|

,

so, the normalized mean curvature vector field is expressed as H0 = An1+B n2.
Then from equalities (6.1) and (3.10) we get

DXH0 = X(A)n1 +X(B)n2;

DYH0 = Y (A)n1 + Y (B)n2.
(6.2)

Theorem 6.1. LetMm be a meridian surface, defined by (3.2). ThenMm has
parallel normalized mean curvature vector field but not parallel mean curvature
vector if and only if one of the following cases holds:

(i) κ 6= 0 and the meridian curve m is defined by

f(u) =
√
au+ b, g(u) =

2

3a2
(au+ b)

3
2 + c,

where a = const 6= 0, b = const, c = const.
(ii) κ = const 6= 0 and the meridian curve m is determined by f ′ =

φ(f) where

φ(t) =
c t+ b

t
, c = const 6= 0, c2 6= κ2, b = const,

g(u) is defined by g′(u) =
ε

2f ′(u)
.

Proof. Let Mm be a surface with parallel normalized mean curvature vector
field, i.e. DXH0 = 0, DYH0 = 0. Then from (6.2) it follows that A = const,
B = const. Hence,

−(ff ′′ + (f ′)2)√
|(ff ′′ + (f ′)2)2 − κ2f ′2|

= α = const;

−κf ′√
|(ff ′′ + (f ′)2)2 − κ2f ′2|

= β = const.
(6.3)

We have the following two cases.

Case (i): ff ′′ + (f ′)2 = 0. In this case, from (3.8) we get that the mean

curvature vector field is H = − κ

2f
n2 and the normalized mean curvature vector

field is H0 = n2. Since we study surfaces with 〈H,H〉 6= 0, we get κ 6= 0. The
solution of the differential equation ff ′′ + (f ′)2 = 0 is given by the formula

f(u) =
√
au+ b, where a = const 6= 0, b = const. Using that g′(u) =

ε

2f ′(u)
,

we obtain g(u) =
2

3a2
(au+ b)

3
2 + c, where c = const.
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Case (ii): ff ′′ + (f ′)2 6= 0 in an interval Ĩ ⊂ I ⊂ R. Then, from (6.3) we get

α

β
κ =

ff ′′ + (f ′)2

f ′
, α 6= 0, β 6= 0. (6.4)

Since the left-hand side of equality (6.4) is a function of v, the right-hand side
of (6.4) is a function of u, we obtain that

ff ′′ + (f ′)2

f ′
= c, c = const 6= 0;

κ =
β

α
c.

In this case we have 〈H,H〉 =
ε(c2 − κ2)

4f2
. Since we study surfaces with

〈H,H〉 6= 0, we get c2 6= κ2. The meridian curve m is determined by the
following differential equation:

ff ′′ + (f ′)2 = cf ′. (6.5)

Setting f ′ = φ(f) in equation (6.5), we obtain that the function φ = φ(t)
satisfies

φ′ +
1

t
φ =

c

t
,

whose general solution is φ(t) =
ct+ b

t
, b = const.

Conversely, if one of the cases (i) or (ii) stated in the theorem holds true,
then by direct computation we get that DXH0 = DYH0 = 0, i.e. the surface
has parallel normalized mean curvature vector field. Moreover, in case (i) we
have

DXH =
κf ′

2f2
n2; DYH = − κ′

2f2
√
ε(ϕ̇2 − ϕ2)

n2,

which implies that H is not parallel in the normal bundle, since κ 6= 0, f ′ 6= 0.
In case (ii) we get

DXH =
εcf ′

2f2
n1 +

κf ′

2f2
n2; DYH = 0,

and again we have that H is not parallel in the normal bundle.

Remark. Theorem 6.1 gives examples of Lorentz surfaces in the pseudo-
Euclidean space E4

2 which have parallel normalized mean curvature vector field
but not parallel mean curvature vector field.
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