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1 Introduction

A submanifold M of a Euclidean space Em is said to be of finite type if its
position vector x can be expressed as a finite sum of eigenvectors of the Laplacian
∆ of M , that is, x = x0 +x1 + ...+xk, where x0 is a constant map, x1, ..., xk are
non-constant maps such that ∆xi = λixi, λi ∈ R, i = 1, 2, ..., k. If λ1, λ2,...,λk
are all different, then M is said to be of k−type. This definition was similarly
extended to differentiable maps, in particular, to Gauss maps of submanifolds
[3].

If a submanifold M of a Euclidean space has 1-type Gauss map G, then G
satisfies ∆G = λ (G+ C) for some λ ∈ R and some constant vector C. Chen
and Piccinni made a general study on compact submanifolds of Euclidean spaces
with finite type Gauss map and they proved that a compact hypersurface M of
En+1 has 1-type Gauss map if and only if M is a hypersphere in En+1 [3].

Hovewer, the Laplacian of the Gauss map of some typical well known surfaces
such as a helicoid, a catenoid and a right cone in Euclidean 3-space E3 take a
some what different form, namely,

∆G = f (G+ C) (1.1)
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for some smooth function f on M and some constant vector C. A submanifold
M of a Euclidean space Em is said to have pointwise 1-type Gauss map if its
Gauss map satisfies (1) for some smooth function f on M and some constant
vector C. A submanifold with pointwise 1-type Gauss map is said to be of the
first kind if the vector C in (1) is zero vector. Otherwise, the pointwise 1-type
Gauss map is said to be of the second kind. A pointwise 1-type Gauss map
is called proper if the function f given by (1.1) is non-constant. Non-proper
pointwise 1-type Gauss map is just usual 1-type Gauss map.

Surfaces in Euclidean space with pointwise 1-type Gauss map were recently
studied in [4], [5], [6]. Also Dursun and Turgay in [7] gave all general rotational
surfaces in E4 with proper pointwise 1-type Gauss map of the first kind and
classified minimal rotational surfaces with proper pointwise 1-type Gauss map
of the second kind. Arslan et al. in [1] investigated rotational embedded surface
with pointwise 1-type Gauss map. Arslan at el. in [2] gave necessary and suffi-
cent conditions for Vranceanu rotation surface to have pointwise 1-type Gauss
map. Yoon in [8] showed that flat Vranceanu rotation surface with pointwise
1-type Gauss map is a Clifford torus.

In this paper, we determine a surface M by means of homothetic motion in
E4 and we give necessary and sufficient conditions for flat surface M with flat
normal bundle to have pointwise 1-type Gauss map. We show that flat surface
with flat normal bundle which has pointwise 1-type Gauss map of the first kind
is a Clifford Torus. Morever we obtain a characterization of minimal surface M
with pointwise 1-type Gauss map.

2 Preliminaries

Let M be an oriented n−dimensional submanifold in m−dimensional Euclidean
space Em. Let e1,...,en, en+1,...,em be an oriented local orthonormal frame in
Em such that e1,...,en are tangent to M and en+1,...,em normal to M. We use
the following convention on the ranges of indices: 1 ≤ i, j, k,...≤ n, n + 1 ≤
r, s, t,...≤ m, 1 ≤ A,B,C,...≤ m.

Let ∇̃ be the Levi-Civita connection of Em and ∇ the induced connection
on M . Let ωA be the dual-1 form of eA defined by ωA (eB) = δAB . Also, the
connection forms ωAB are defined by

deA =
∑
B

ωABeB , ωAB + ωBA = 0.

Then we have

∇̃ekei =

n∑
j=1

ωij (ek) ej +

m∑
r=n+1

hriker

and

∇̃ekes = −As(ek) +Dekes, Dekes =

m∑
r=n+1

ωsr (ek) er,
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where D is the normal connection, hrik the coefficients of the second fundamental
form h and As the Weingarten map in the direction es.

For any real function f on M, the Laplacian of f is defined by

∆f = −
∑
i

(
∇̃ei∇̃eif − ∇̃∇ei

ei
f
)
. (2.1)

The mean curvature vector H and Gaussian curvature K are defined by

H =
1

n

∑
r,i

hriier (2.2)

and

K =

m∑
s=n+1

(hs11h
s
22 − hs12hs21) . (2.3)

Also normal curvature tensor RD of M in Em is given by

RD(ej , ek; er, es) =

n∑
i=1

(
hrikh

s
ij − hrijhsik

)
. (2.4)

Let us now define the Gauss map G of a submanifold M into G(n,m) in
∧nEm, where G(n,m) is the Grassmannian manifold consisting of all oriented
n−planes through the origin of Em and ∧nEm is the vector space obtained
by the exterior product of n vectors in Em. In a natural way, we can identify

∧nEm with some Euclidean space EN where N =

(
m
n

)
. The map G : M →

G(n,m) ⊂ EN defined by G(p) = (e1 ∧ ... ∧ en) (p) is called the Gauss map of
M, that is, a smooth map which carries a point p in M into the oriented n−plane
through the origin of Em obtained from parallel translation of the tangent space
of M at p in Em.

The Laplacian of the Gauss map G for an n−dimensional submanifold M of
Euclidean space Em was given by

Lemma 2.1. (See [3]) Let x : M → Em be an isometric immersion of an
oriented n-dimensional Riemannian manifold M into Em. Then the Laplacian
of the Gauss map G : M → G (n,m) ⊂ ∧nEm is given by

∆G = −n
∑
i

e1 ∧ ... ∧DeiH ∧ ... ∧ en (2.5)

+RD (ej , ek; er, es) e1 ∧ ... ∧ ek th
s ∧ ... ∧ ej th

r ∧ ... ∧ en + ‖h‖2G.
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3 Homothetic Motion and Surfaces
with Pointwise 1-Type Gauss Map

In this section, we define a surface by using the homothetic motion as follows:

f (t, s) = h(t)


cos t − sin t 0 0
sin t cos t 0 0

0 0 cos t − sin t
0 0 sin t cos t




α1(s)
α2(s)
α3(s)
α4(s)

+


C1 (t)
C2 (t)
C3 (t)
C4 (t)

 ,

(3.1)
where h(t) is the homothetic scale of the motion, C (t) = (C1 (t) , C2 (t) , C3 (t) , C4 (t))
is the translation vector and α (s) = (α1 (s) , α2 (s) , α3 (s) , α4 (s)) is a profile
curve. If we choose the profile curve α as α (s) = (u(s) cos s, 0, u(s) sin s, 0) and
the translation vector C (t) = ~0 in (3.1), we obtain the surface M as follows:

f (s, t) = (u(s)h(t) cos s cos t, u(s)h(t) cos s sin t, u(s)h(t) sin s cos t, u(s)h(t) sin s sin t)
(3.2)

Let M be a surface in E4 given by the parametrization (3.2). The tangent
vectors of f (s, t) can be easily computed as

~v1 =
∂f

∂t
= (A1B

′
1, A1B

′
2, A2B

′
1, A2B

′
2) ,

~v2 =
∂f

∂s
=
(
Ȧ1B1, Ȧ1B2, Ȧ2B1, Ȧ2B2

)
and a basis of the normal space of f (s, t) can be given as follows:

~v3 = (−A2B2, A2B1, A1B2,−A1B1) ,

~v4 =
(
−Ȧ2B

′
2, Ȧ2B

′
1, Ȧ1B

′
2,−Ȧ1B

′
1

)
,

where

A1 = u(s) cos s, A2 = u(s) sin s

B1 = h(t) cos t, B2 = h(t) sin t

and Ȧi = ∂Ai

∂s for i = 1, 2 and B′j =
∂Bj

∂t j = 1, 2. By using Gramm-Schmidth
orthonormalization, the orthonormal vectors of tangent and normal spaces of
M are obtained, respectively, by

e1 =
1
√
v11

~v1,

e2 =
1√

|v11 (v11v22 − v212)|
(v11~v2 − v12~v1)
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and

e3 =
1
√
v33

~v3,

e4 =
1√

|v33 (v33v44 − v234)|
(v33~v4 − v34~v3) ,

where

v11 = 〈~v1, ~v1〉 = u2 (s)
(
h2 (t) + (h′ (t))

2
)
,

v12 = 〈~v1, ~v2〉 = u (s) u̇ (s)h (t)h′ (t) ,

v22 = 〈~v2, ~v2〉 =
(
u2 (s) + (u̇ (s))

2
)
h2 (t) ,

v33 = 〈~v3, ~v3〉 = u2 (s)h2 (t) ,

v34 = 〈~v3, ~v4〉 = u (s) u̇ (s)h (t)h′ (t) ,

v44 = 〈~v4, ~v4〉 =
(
u2 (s) + (u̇ (s))

2
)(

h2 (t) + (h′ (t))
2
)
.

Hence, {e1, e2, e3, e4} is orthonormal moving frame on M. Then we have the
dual 1-forms as:

ω1 =
u̇hh′(

h2 + (h′)
2
) 1

2

ds+
u
(
h2 + (h′)

2
)

(
h2 + (h′)

2
) 1

2

dt

ω2 =
h
(
u2h2 + u2 (h′)

2
+ (u̇)

2
h2
) 1

2

(
h2 + (h′)

2
) 1

2

ds

By a direct computation we have components of the second fundamental form
and the connection forms as:

h311 = 0, h312 = − 1

W
1
2

, h322 = 2
u̇h′

W
(3.3)

h411 =

(
2 (h′)

2 − hh′′ + h2
)

(
h2 + (h′)

2
)
W

1
2

, (3.4)

h412 =
u̇h′

(
hh′′ − (h′)

2
)

(
h2 + (h′)

2
)
W

,

h422 =

(
2 (u̇)

2 − uü+ u2
)(

h2 + (h′)
2
)2
− (u̇)

2
(h′)

2 (
hh′′ + h2

)(
h2 + (h′)

2
)
W

3
2
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and

ω12 = −
u̇h
(

2 (h′)
2 − hh′′ + h2

)
u
(
h2 + (h′)

2
) 3

2

W
1
2

ω1

+
u2h′

(
h2 + (h′)

2
)2

+ (u̇)
2
h2h′

(
2 (h′)

2 − hh′′ + h2
)

uh
(
h2 + (h′)

2
) 3

2

W

ω2, (3.5)

ω34 =
u̇h

u
(
h2 + (h′)

2
) 1

2

W
1
2

ω1 +
h′
(
u2h2 + u2 (h′)

2 − (u̇)
2
h2
)

uh
(
h2 + (h′)

2
) 1

2

W

ω2,

where W = u2h2 + u2 (h′)
2

+ (u̇)
2
h2.

Proposition 3.1. Let M be the surface given by the parameterization (3.2).
The Gaussian curvature and the normal bundle curvature of M are given, re-
spectively, by

K =

(
2 (h′)

2 − hh′′ + h2
)(

2 (u̇)
2 − uü+ u2

)
−
(
h2 + (h′)

2
)(

u2 + (u̇)
2
)

W 2

(3.6)
and

RD =

(
2 (u̇)

2 − uü+ u2
)(

h2 + (h′)
2
)
−
(

2 (h′)
2 − hh′′ + h2

)(
u2 + (u̇)

2
)

W 2

(3.7)

Proof. By using (2.3), (2.4), (3.3) and (3.4), we obtain (3.6) and (3.7).

Corollary 3.2. Let M be the surface given by the parameterization (3.2). M
is a flat surface with flat normal bundle if and only if it is parameterized by

f(t, s) = a1a2e
k1t+k2s (cos s cos t, cos s sin t, sin s cos t, sin s sin t) (3.8)

or

f(t, s) =
c1c2√

|cos (2t+ b1)|
√
|cos (2s+ b2)|

(cos s cos t, cos s sin t, sin s cos t, sin s sin t)

(3.9)

Proof. Let M be a flat surface with flat normal bundle. Then both K = 0 and
RD = 0. From (3.6), we have

2 (h′)
2 − hh′′ + h2

h2 + (h′)
2 .

2 (u̇)
2 − uü+ u2

u2 + (u̇)
2 = 1 (3.10)
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and from (3.7), we get

2 (h′)
2 − hh′′ + h2

h2 + (h′)
2 =

2 (u̇)
2 − uü+ u2

u2 (s) + (u̇)
2 . (3.11)

By combining (3.10) and (3.11) and solving these differential equations we obtain

h(t) = a1e
k1t and u (s) = a2e

k2s

or
h(t) =

c1√
|cos (2t+ b1)|

and u (s) =
c2√

|cos (2s+ b2)|
,

where a1, a2, b1, b2, c1, c2, k1 and k2 are real constants.

Remark 3.3. The surface M given by the parameterization (3.2) can be consid-
ered as the tensor product surface of two Euclidean planar curves, that is, let
α : R→ R2, α(s) = (α1(s), α2(s)) and β : R→ R2, β(t) = (β1(t), β2(t)) be two
Euclidean planar curves. The tensor product surface f (t, s) is defined by

f = α⊗ β : R2 → R4,

f (t, s) = (α1(s)β1(t), α1(s)β2(t), α2(s)β1(t), α2(s)β2(t)) .

In particular, for the curves α(s) = (u (s) cos s, u (s) sin s) and β(t) = (h(t) cos t, h(t) sin t)
the tensor product of them gives the surface M given by the parameterization
(3.2).

Theorem 3.4. (See [9]). A regular tensor product surface x(s, t) = α(s)⊗β(t)
of two curves α : R→ R2, α(s) = (u (s) cos s, u (s) sin s) or β : R→ R2, β(t) =
(h(t) cos t, h(t) sin t) is flat if and only if either

1. α or β is a straight line through the origin.
2. α and β are sinusoidal spirals, that is, the curves α and β are parame-

terized by

α(s) = c1 |cos ((a+ 1) s+ b1)|−
1

a+1 (cos s, sin s)

β(t) = c2

∣∣∣∣cos

((
1

a
+ 1

)
t+ b2

)∣∣∣∣− 1
1
a

+1

(cos t, sin t)

3. α and β are logarithmic spirals, that is, the curves α and β are parame-
terized by

α(s) = a1e
k1s (cos s, sin s) and β(t) = a2e

k2t (cos t, sin t)

with a1, a2, b1, b2, c1, c2, k1 and k2 are real constants, a1, a2, c1, c2 > 0 and a 6=
−1.
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Remark 3.5. In [8] Yoon studied Vranceanu surface parameterized by

f (s, t) = (u(s) cos s cos t, u(s) cos s sin t, u(s) sin s cos t, u(s) sin s sin t) .

He proved that flat Vranceanu surface in E4 has pointwise 1-type Gauss map
if and only if it is a Clifford torus. Also the normal bundle of flat Vranceanu
surface is flat, too.

Now we investigate flat surface M with flat normal bundle with pointwise
1-type Gauss map.

Theorem 3.6. Let M be flat surface with flat normal bundle given by the
parameterization (3.2). Then M has pointwise 1-type Gauss map if and only if
either

1. M is a Clifford torus, that is, the product of two plane circles with same
radius

2. It is the product of two logarithmic spirals which is parameterized by

f(t, s) = ek(t±s) (cos s cos t, cos s sin t, sin s cos t, sin s sin t)

where k is non zero real constant.

Proof. Firstly, we assume that the flat surface M with flat normal bundle given
by the parameterization (3.8) has pointwise 1-type Gauss map. If necessary, by
an appropriate homothetic transformation we may assume that a1 = a2 = 1.
Then we have h(t) = ek1t and u (s) = ek2s. By using (3.3), (3.4) and (3.5) we
have components of the second fundamental form and the connection forms as:

h311 = 0, h312 = −α (s, t) , h322 = aα (s, t)

h411 = α (s, t) , h412 = 0, h422 = α (s, t)

and

ω12 = bα (s, t)ω1 + cα (s, t)ω2, ω13 = −α (s, t)ω2, ω14 = α (s, t)ω1

ω23 = −α (s, t)ω1 + aα (s, t)ω2 ω24 = α (s, t)ω2, ω34 = −bα (s, t)ω1 + dα (s, t)ω2,

By covariant differentiation with respect to e1 and e2 a straightforward calcu-
lation gives:

∇̃e1e1 = bαe2 + αe4, (3.12)

∇̃e2e1 = cαe2 − αe3,
∇̃e1e2 = −bαe1 − αe3,
∇̃e2e2 = −cαe1 + aαe3 + αe4,

∇̃e1e3 = αe2 − bαe4,
∇̃e2e3 = αe1 − aαe2 + dαe4

∇̃e1e4 = −αe1 + bαe3,

∇̃e2e4 = −αe2 − dαe3,
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where

α (s, t) =
1

u(s)h(t) (1 + k21 + k22)
1
2

, a =
2k1k2

(1 + k21 + k22)
1
2

, b = − k2

(1 + k21)
1
2

,

c =
k1
(
1 + k21 + k22

) 1
2

(1 + k21)
1
2

, d =
k1
(
1 + k21 − k22

)
(1 + k21)

1
2 (1 + k21 + k22)

1
2

(3.13)

By using (2.1) and (3.12) and after straight-forward computations, the Lapla-
cian ∆G of the Gauss map G can be expressed as

∆G =
(
4 + a2

)
α2e1 ∧ e2 + (c+ d)α2e1 ∧ e3 − (2b+ ad)α2e1 ∧ e4

+ (2b− ac)α2e2 ∧ e3 − (c+ d)α2e2 ∧ e4. (3.14)

We suppose that the flat surface M with flat normal bundle has pointwise 1-type
Gauss map. From (1.1) and (3.14), we get(

4 + a2
)
α2 = f + f 〈C, e1 ∧ e2〉 (3.15)

(c+ d)α2 = f 〈C, e1 ∧ e3〉 (3.16)

(−2b− ad)α2 = f 〈C, e1 ∧ e4〉 (3.17)

(2b− ac)α2 = f 〈C, e2 ∧ e3〉 (3.18)

− (c+ d)α2 = f 〈C, e2 ∧ e4〉 (3.19)

Then, we have
〈C, e3 ∧ e4〉 = 0 (3.20)

By differentiating (3.20) with respect to e1, we get

〈C, e1 ∧ e3〉+ 〈C, e2 ∧ e4〉 = 0 (3.21)

When we take the derivative of (3.20) with respect to e2, we have

〈C, e1 ∧ e4〉+ 〈C, e2 ∧ e3〉 − a 〈C, e2 ∧ e4〉 = 0 (3.22)

If we evaluate the derivative of (3.22) with respect to e2 again, we get

2 〈C, e1 ∧ e2〉 = − (c+ d) 〈C, e1 ∧ e3〉+ ac 〈C, e1 ∧ e4〉 (3.23)

+ad 〈C, e2 ∧ e3〉+ (c+ d) 〈C, e2 ∧ e4〉

By using (3.15), (3.16), (3.17), (3.18), (3.19), (3.21) and (3.23) we then have

f =
(

4 + a2 + (c+ d)
2

+ abc+ a2cd− abd
)
α2 = Aα2 (3.24)

that is, a smooth function f depends on s and t. Differentiating (3.24) with
respect to e1, we have

e1(f) = −2cAα3. (3.25)
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On the other hand, by differentiating (3.19) with respect to e1 and by using
(3.12), (3.15), (3.17), (3.18), (3.19), (3.24) and (3.25) we obtain

4b2 + 2abd− 2abc− a2cd− (c+ d)
2

= 0. (3.26)

By substituting (3.13) into (3.26) we get(
k21 − k22

) (
1 + k21 + k22 + k21k

2
2

)
= 0 (3.27)

and from (3.27) we obtain that k1 = ±k2. In particular, if we take as k1 = k2 =
0, we obtain Clifford torus. For the other cases, we obtain the tensor product
surface of two logarithmic spirals.

Conversely, we assume that k21 = k22. In that case the flat surface M with
flat normal bundle is given by the parametrization (3.8) has pointwise 1-type
Gauss map for the function

f (s, t) =
(

4 + a2 + (c+ d)
2

+ abc+ a2cd− abd
)
α2 = Aα2

and the constant vector

C =
1

A

( (
4 + a2 −A

)
e1 ∧ e2 + (c+ d) e1 ∧ e3 − (2b+ ad) e1 ∧ e4

)
+

1

A

(
(2b− ac) e2 ∧ e3 − (c+ d) e2 ∧ e4

)
.

Now, we assume that the flat surface M with flat normal bundle is given by the
parametrization (3.9). We research whether this surface has pointwise 1-type
Gauss map. We can write as

u(s) = c1 (ε cos (2s))
− 1

2 ,

where if cos (2s) > 0 ( resp. < 0), then ε = 1 (resp. = −1). Analogously, we
can write as

h(t) = c2 (δ cos (2t))
− 1

2 ,

where if cos (2t) > 0 (< 0, respectively) then δ = 1(−1,respectively). By using
(3.3), (3.4) and (3.5) we have components of the second fundamental form and
the connection forms as:

h311 = 0, h312 = −λ (s, t) , h322 = κ(s, t)λ (s, t)

h411 = −λ (s, t) , h412 = κ(s, t)λ (s, t) , h422 = −
(
1 + κ2(s, t)

)
λ (s, t)

and

ω12 = τ (s, t)λ (s, t)ω1 + β (s, t)λ2 (s, t)ω2

ω34 = τ (s, t)λ (s, t)ω1 + β (s, t)λ2 (s, t)ω2.
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By covariant differentiation with respect to e1 and e2, we get

∇̃e1e1 = τλe2 − λe4, (3.28)

∇̃e2e1 = βλ2e2 − λe3 + κλe4,
∇̃e1e2 = −τλe1 − λe3 + κλe4,
∇̃e2e2 = −βλ2e1 + κλe3 −

(
1 + κ2

)
λe4,

∇̃e1e3 = λe2 + τλe4,

∇̃e2e3 = λe1 − κλe2 + βλ2e4

∇̃e1e4 = λe1 − κλe2 − τλe3,
∇̃e2e4 = −κλe1 +

(
1 + κ2

)
λe2 − βλ2e3,

where

κ(s, t) =
2 (ε sin (2s)) (δ sin (2t))(

1− (ε sin (2s))
2

(δ sin (2t))
2
) 1

2

,

τ (s, t) =
(ε sin (2s)) (δ cos (2t))

(ε cos (2s))
,

β (s, t) =
c1c2 (δ sin (2t))

(
(ε cos (2s))

2 − (ε sin (2s))
2

(δ cos (2t))
2
)

(ε cos (2s))
5
2 (δ cos (2t))

5
2

,

λ (s, t) =
1

W
1
2

=
(ε cos (2s))

3
2 (δ cos (2t))

3
2

c1c2

(
1− (ε sin (2s))

2
(δ sin (2t))

2
) 1

2

.

By using (2.1), straight-forward computation the Laplacian ∆G of the Gauss
map G can be expressed as

∆G =
(
4 + 5κ2 + κ4

)
λ2e1 ∧ e2 +

(
−e2 (κλ)− β

(
2 + κ2

)
λ3
)
e1 ∧ e3

+
(
e2
((

2 + κ2
)
λ
)
− βκλ3

)
e1 ∧ e4 (3.29)

+
(
e1 (κλ) + τ

(
2 + κ2

)
λ2
)
e2 ∧ e3 +

(
−e1

((
2 + κ2

)
λ
)

+ τκλ2
)
e2 ∧ e4.

We suppose that the flat surface M with flat normal bundle has pointwise 1-type
Gauss map. From (1.1) and (3.29), we get(

4 + 5κ2 + κ4
)
λ2 = f + f 〈C, e1 ∧ e2〉 , (3.30)

−e2 (κλ)− β
(
2 + κ2

)
λ3 = f 〈C, e1 ∧ e3〉 , (3.31)

e2
((

2 + κ2
)
λ
)
− βκλ3 = f 〈C, e1 ∧ e4〉 , (3.32)

e1 (κλ) + τ
(
2 + κ2

)
λ2 = f 〈C, e2 ∧ e3〉 , (3.33)

−e1
((

2 + κ2
)
λ
)

+ τκλ2 = f 〈C, e2 ∧ e4〉 . (3.34)

Then we have
〈C, e3 ∧ e4〉 = 0. (3.35)
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By differentiating (3.35) with respect to e1, we get

〈C, e2 ∧ e4〉 − 〈C, e1 ∧ e3〉+ κ 〈C, e2 ∧ e3〉 = 0. (3.36)

By considering together with (3.31), (3.33), (3.34) and (3.36), we have

−e1
((

2 + κ2
)
λ
)

+ τκλ2 + κ
(
e1 (κλ) + τ

(
2 + κ2

)
λ2
)

+e2 (κλ) + β
(
2 + κ2

)
λ3 = 0.

(3.37)

On the other hand, after some long computations we have

e1 (κ) =
4 (ε sin (2s)) (ε cos (2s))

1
2 (δ cos (2t))

5
2

c1c2

(
1− (ε sin (2s))

2
(δ sin (2t))

2
) 3

2

, (3.38)

e2 (κ) =
4λ (ε cos (2s)) (δ sin (2t)) (δ cos (2t))

−1(
1− (ε sin (2s))

2
(δ sin (2t))

2
) 3

2

− 4λ (ε sin (2s))
2

(ε cos (2s))
−1

(δ sin (2t)) (δ cos (2t))(
1− (ε sin (2s))

2
(δ sin (2t))

2
) 3

2

,

(3.39)

e1(λ) =
((ε cos(2s))2(δ sin(2t))(δ cos(2t))2)

c21c
2
2(1− (ε sin(2s))2(δ sin(2t))2)

3
2

(
− 3 + 2(ε sin(2s))2

+ (ε sin(2s))2(δ sin(2t))2
) (3.40)

and

e2(λ) =ζ
(

(−3 + 2(δ sin(2t))2 + (ε sin(2s))2(δ sin(2t))2)

− (δ sin(2t))2(−3 + 2(ε sin(2s))2 + (ε sin(2s))2(δ sin(2t))2)
)
,

ζ =
λ(ε sin(2s)(ε cos(2s))

1
2 (δ cos(2t))

1
2 )

c1c2(1− (ε sin(2s))2(δ sin(2t))2)
3
2

·

(3.41)

By combining (3.38), (3.39), (3.40) and (3.41) with (3.37), we obtain that this
equation is not satisfied. So, there is no flat surface with flat normal bundle
given by the parameterization (3.9) which has pointwise 1-type Gauss map.

Corollary 3.7. Let M be flat surface with flat normal bundle given by the
parameterization (3.2). M has pointwise 1-type Gauss map of the first kind if
and only if it is a Clifford Torus.

Proof. From Theorem 3.6 the flat surface M with flat normal bundle is given
by the parameterization (3.2) has pointwise 1-type Gauss map for the function

f (s, t) = Aα2
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and the constant vector

C =
1

A

(
(4 + a2 −A)e1 ∧ e2 + (c+ d)e1 ∧ e3 − (2b+ ad)e1 ∧ e4

)
+

1

A

(
(2b− ac)e2 ∧ e3 − (c+ d)e2 ∧ e4

)
with k21 = k22, where

A =
(

4 + a2 + (c+ d)
2

+ abc+ a2cd− abd
)
.

We assume that the surface M has pointwise 1-type Gauss map of the first
kind. Then, we obtain C = 0, that is, all components of C is zero. Then, we
get k1 = k2 = 0. This completes the proof.

Theorem 3.8. An oriented minimal surface M in the Euclidean space E4 has
pointwise 1-type Gauss map of the first kind if and only if M has a flat normal
bundle [6].

Theorem 3.9. There exists no minimal surface given by the parameterization
(3.2) with pointwise 1-type Gauss map of the first kind.

Proof. We suppose that the surface M given by the parameterization (3.2) is
minimal surface with pointwise 1-type Gauss map of the first kind. From Theo-
rem 3.8 we have RD = 0. Since the surface M is minimal and its normal bundle
is flat then (2.2) and (2.4) imply, respectively

h311 + h322 = 0 and h411 + h422 = 0 (3.42)

h312
(
h411 − h422

)
+ h412

(
h322 − h311

)
= 0. (3.43)

By combining (3.3), (3.4), (3.42) and (3.43) we have

h322 = h411 = h422 = 0. (3.44)

The equation (3.44) conflicts with the regularity of the surface.

Theorem 3.10. (See [6]). A non-planar minimal oriented surface M in the
Euclidean space E4 has pointwise 1-type Gauss map of the second kind if and
only if, with respect to some suitable local orthonormal frame {e1, e2, e3, e4} on
M , the shape operators of M are given by

A3 =

(
ρ 0
0 −ρ

)
and A4 =

(
0 ερ
ερ 0

)
,

where ε = ±1 and ρ is a smooth non-zero function on M.

Theorem 3.11. Let M be minimal surface given by the parameterization (3.2).
Then M has pointwise 1-type Gauss map of the second kind if and only if it is
parametrized by

f(t, s) =
bd√

|cos (2s+ c)|
(cos s cos t, cos s sin t, sin s cos t, sin s sin t)
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or

f(t, s) =
bd√

|cos (2t+ c)|
(cos s cos t, cos s sin t, sin s cos t, sin s sin t)

where b, d and c are real constants.

Proof. We assume that M is a minimal surface with pointwise 1-type Gauss
map of second kind. In that case the mean curvature of M is zero and we have

h322 = 0 (3.45)

and
h411 + h422 = 0. (3.46)

By using (2.5), the Laplacian ∆G of the Gauss map G is written as

∆G = ‖h‖2G+ 2RDe3 ∧ e4, (3.47)

where RD 6= 0. In the opposite case, M has pointwise 1-type Gauss map of the
first kind. By using (2.4), (3.45) and (3.46) we get

RD = 2h312h
4
11 6= 0. (3.48)

Since M has pointwise 1-type Gauss map of the second kind, from (1.1) and
(3.47) we have

‖h‖2G+ 2RDe3 ∧ e4 = fG+ fC (3.49)

for some smooth non-zero function f on M and some constant vector C. Since
the vector C is a linear combination of e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4,
e3 ∧ e4. From (3.49) we get

‖h‖2 = f (1 + 〈C, e1 ∧ e2〉) (3.50)

2RD = f 〈C, e3 ∧ e4〉 6= 0 (3.51)

and
〈C, e1 ∧ e3〉 = 〈C, e1 ∧ e4〉 = 〈C, e2 ∧ e3〉 = 〈C, e2 ∧ e4〉 = 0

Since h312 is not equal to zero on M , it follows that‖h‖ 6= 0 or 〈C, e1 ∧ e2〉 6= −1.
Differentiating 〈C, e1 ∧ e3〉 = 0 with respect to e1 and e2, we get

h312 〈C, e1 ∧ e2〉+ h411 〈C, e3 ∧ e4〉 = 0 (3.52)

and
h412 〈C, e3 ∧ e4〉 = 0, (3.53)

respectively. On the other hand, differentiating 〈C, e1 ∧ e4〉 = 0 with respect to
e1 and e2, we have

h412 〈C, e1 ∧ e2〉 = 0 (3.54)

and
h312 〈C, e3 ∧ e4〉+ h411 〈C, e1 ∧ e2〉 = 0, (3.55)
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respectively. The equation (3.54) implies that h412 = 0 or 〈C, e1 ∧ e2〉 = 0. If
〈C, e1 ∧ e2〉 = 0 then from (3.55) we get h312 〈C, e3 ∧ e4〉 = 0. h312 is not equal
to zero on M. Hence we have 〈C, e3 ∧ e4〉 = 0 and (3.51) implies that RD = 0.
This is a contradiction. So 〈C, e1 ∧ e2〉 6= 0 and h412 = 0. By using (3.52) and
(3.55) we obtain (

h312
)2

=
(
h411
)2
. (3.56)

From (3.45) and (3.3) we get u̇ = 0 or h′ = 0. Firstly we assume that h′ 6= 0.
Then we have u = d =constant. By considering together with (3.3), (3.4), (3.46)
and (3.56) we obtain

h(t) =
c√

|cos (2t+ b)|
·

Now we assume that u̇ 6= 0. Then we have h = d = constant. By using (3.3) and
(3.4) with h = d, we can see that (3.56) is satisfied directly. So, if we consider
(3.4), (3.46) for h = d we obtain

u(s) =
c√

|cos (2s+ b)|
,

where b, c and d are real constants.
If we consider as both u̇ = 0 and h′ = 0, then the surface M is not minimal

surface.
On the other hand by using (3.47), (3.48), (3.50), (3.51), (3.55) and (3.56)

(or see the proof of Theorem 5 in [6]) we can find the function f and the constant
vector C as

f(s) = 8
(
h312
)2

(3.57)

and

C = −e1 ∧ e2
2

+ ε
e3 ∧ e4

2
· (3.58)

Hence the minimal surface M has pointwise 1-type Gauss map of the second
kind for the function f and the constant vector C given by (3.57) and (3.58),
respectively. This completes the proof.
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