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1 INTRODUCTION

A submanifold M of a Euclidean space E™ is said to be of finite type if its
position vector x can be expressed as a finite sum of eigenvectors of the Laplacian
A of M, that is, x = xg+x1 + ...+, where xg is a constant map, x1, ..., Ty are
non-constant maps such that Az; = Az, A; € R, 0 = 1,2,k If Mg, Aoy A
are all different, then M is said to be of k—type. This definition was similarly
extended to differentiable maps, in particular, to Gauss maps of submanifolds
[3].

If a submanifold M of a Euclidean space has 1-type Gauss map G, then G
satisfies AG = A (G + C) for some A € R and some constant vector C. Chen
and Piccinni made a general study on compact submanifolds of Euclidean spaces
with finite type Gauss map and they proved that a compact hypersurface M of
E"*! has 1-type Gauss map if and only if M is a hypersphere in E"+! [3].

Hovewer, the Laplacian of the Gauss map of some typical well known surfaces
such as a helicoid, a catenoid and a right cone in Euclidean 3-space E? take a
some what different form, namely,

AG = f(G+C) (1.1)
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for some smooth function f on M and some constant vector C. A submanifold
M of a Euclidean space E™ is said to have pointwise 1-type Gauss map if its
Gauss map satisfies (1) for some smooth function f on M and some constant
vector C. A submanifold with pointwise 1-type Gauss map is said to be of the
first kind if the vector C in (1) is zero vector. Otherwise, the pointwise 1-type
Gauss map is said to be of the second kind. A pointwise 1-type Gauss map
is called proper if the function f given by (1.1) is non-constant. Non-proper
pointwise 1-type Gauss map is just usual 1-type Gauss map.

Surfaces in Euclidean space with pointwise 1-type Gauss map were recently
studied in [4], [5], [6]. Also Dursun and Turgay in [7] gave all general rotational
surfaces in E* with proper pointwise 1-type Gauss map of the first kind and
classified minimal rotational surfaces with proper pointwise 1-type Gauss map
of the second kind. Arslan et al. in [1] investigated rotational embedded surface
with pointwise 1-type Gauss map. Arslan at el. in [2] gave necessary and suffi-
cent conditions for Vranceanu rotation surface to have pointwise 1-type Gauss
map. Yoon in [8] showed that flat Vranceanu rotation surface with pointwise
1-type Gauss map is a Clifford torus.

In this paper, we determine a surface M by means of homothetic motion in
E* and we give necessary and sufficient conditions for flat surface M with flat
normal bundle to have pointwise 1-type Gauss map. We show that flat surface
with flat normal bundle which has pointwise 1-type Gauss map of the first kind
is a Clifford Torus. Morever we obtain a characterization of minimal surface M
with pointwise 1-type Gauss map.

2 PRELIMINARIES

Let M be an oriented n—dimensional submanifold in m—dimensional Euclidean
space E™. Let eq,....en, €n41,...,6; be an oriented local orthonormal frame in
E™ such that ei,...,e,, are tangent to M and e;41,...,6,, normal to M. We use
the following convention on the ranges of indices: 1 < 4,5, k,..<n, n+1 <
r, 8, t...<m, 1 <A B,C,...<m.

Let V be the Levi-Civita connection of E™ and V the induced connection
on M. Let ws be the dual-1 form of e4 defined by wa (eg) = dap. Also, the
connection forms wp are defined by

des = E waBeB, wap+wpa=0.
B

Then we have

n m
Ve, €i = Zwii (er)e; + Z hi.e;
j=1

r=n+1
and
m
vekes = _As(ek) + Dekesa Dekes = E Wsr (6k) Er,
r=n+1
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where D is the normal connection, h], the coeflicients of the second fundamental
form h and Ag the Weingarten map in the direction e,.
For any real function f on M, the Laplacian of f is defined by

Af=-%" (@eﬁeif—@vzf). (2.1)
The mean curvature vector H and Gaussian curvature K are defined by

1
H=- hl.e, 2.2
PILT (22)

and .
K= Z (hi1h3 — high3,). (2.3)
s=n-+1

Also normal curvature tensor R” of M in E™ is given by

n

RP(ej,erserses) = ) (hiphi; —hizhiy) . (2.4)

i=1

Let us now define the Gauss map G of a submanifold M into G(n,m) in
AME™, where G(n,m) is the Grassmannian manifold consisting of all oriented
n—planes through the origin of E™ and A™E™ is the vector space obtained
by the exterior product of n vectors in E™. In a natural way, we can identify

AME™ with some Euclidean space EY where N = < ZL > . The map G: M —

G(n,m) C EV defined by G(p) = (e1 A ... Aey,) (p) is called the Gauss map of
M, that is, a smooth map which carries a point p in M into the oriented n—plane
through the origin of E™ obtained from parallel translation of the tangent space
of M at p in E™.

The Laplacian of the Gauss map G for an n—dimensional submanifold M of
Euclidean space E™ was given by

Lemma 2.1. (See [3]) Let x : M — E™ be an isometric immersion of an
oriented n-dimensional Riemannian manifold M into E™. Then the Laplacian
of the Gauss map G : M — G (n,m) C A"E™ is given by

AG = —nZel/\.../\DeiH/\.../\en (2.5)

+RP (ej,exseres)er A AP A LAl A L Ne, + || G.
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3 HOMOTHETIC MOTION AND SURFACES
WITH POINTWISE 1-TYPE GAUSS MAP

In this section, we define a surface by using the homothetic motion as follows:

cost —sint 0 0 a1(s) Cy ()
B sint  cost 0 0 as(s) Cs ()

f(t:5) = h{t) 0 0 cost —sint as(s) * Cs(t) |’
0 0 sint  cost ay(s) Cy ()

(3.1)
where h(t) is the homothetic scale of the motion, C (t) = (Cy (t),Cs (t),Cs (t) ,C4 (1))
is the translation vector and « (s) = (a1 (s),aa (s),a3(s),as(s)) is a profile
curve. If we choose the profile curve o as a(s) = (u(s) cos s,0,u(s) sin s,0) and
the translation vector C (t) = 0 in (3.1), we obtain the surface M as follows:

f (s,t) = (u(s)h(t) cos scost,u(s)h(t) cos ssint, u(s)h(t) sin s cost, u(s)h(t) sin s sint)
(3.2)

Let M be a surface in E* given by the parametrization (3.2). The tangent

vectors of f (s,t) can be easily computed as

Bi= U= (A\BL,AB) B, AsB)),
Uy = gz <A131,A1327A231,A232)
0s

and a basis of the normal space of f (s,t) can be given as follows:

U3 = (—A2B2,A2By1, A1 By, —A1By),
Uy = <—AzB§,A2Bi,AlB§7—A1B£) ;
where
A1 = wu(s)coss, Az = u(s)sins
By = h(t)cost, Bs = h(t)sint
and A; = 88‘21' for i = 1,2 and B;- = 6£j j = 1,2. By using Gramm-Schmidth

orthonormalization, the orthonormal vectors of tangent and normal spaces of
M are obtained, respectively, by

1
€1 = U1,

V11
1

ey = (011172 - U12171)
Vv (11022 — v3,)]
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and

I
€3 = U3,

\/U33
1

es = (V3304 — v34773)
V|33 (V33044 — v3,)] 7

where
o= (FLE) = (s) (B2 + (0 (1)°)
vz = (,0) = uls)u(s) h (D)W (1),
vip = (2 ) = (u? () + (@ (s))°) B2 (1),
vss = (U3, T3) = u” (s) h* (1),
vsa = (U5, 0a) =u(s)u(s)h(t)h' (t),
v = (T = (v (5) + @ ()) (20 + (0 (0)°).

Hence, {e1,e2,e3,e4} is orthonormal moving frame on M. Then we have the
dual 1-forms as:

wp = —ds +

(o0
By a direct computation we have components of the second fundamental form

and the connection forms as:

1
W3

uh’

hy =0, hi,=— h3y = 2—
11 ’ 12 ’ 22 w

(3.3)

v (2007 = n +02) )
v (h2 + (h/)z) wi '
o b (hh" - (h’)2)
2 = (h2 N (h’)Q) —

(2(@)” = wit +u?) (12 + (h’)2>2 — (@)% ()% (hh" + h?)

M = (r2 + w)?) w
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and

ih (2 (W')? — hh' + h2>
wi2 = - 3 w1
1

u (h2 + (h’)z)E W

wZh! (h2 + (h’)2)2 + (@) h2H (2 ()2 — hh' + h2)
3 w2, (35)
uh (h2 + (h’)2> ‘w

ik B (w2 () = (i) 2
w = T w1 + 1 w2,
i u (h2 + (h’)Q) o uh (h2 + (h’)2) ‘w 2

where W = u2h2 + u2 (W')* + (i) h2.

Proposition 3.1. Let M be the surface given by the parameterization (3.2).
The Gaussian curvature and the normal bundle curvature of M are given, re-
spectively, by

(2 (W')? — hh' + h2> (2 (@)? — wii + u2) - (h2 + (h’)2) (u2 + (u)2)

K= e
(3.6)
and
. (2@ = wii+u2) (124 0)7) = (2000 = b0 + 12) (w? + (@)°)
W2
(3.7)
Proof. By using (2.3), (2.4), (3.3) and (3.4), we obtain (3.6) and (3.7). O

Corollary 3.2. Let M be the surface given by the parameterization (5.2). M
1s a flat surface with flat normal bundle if and only if it is parameterized by

kit+ksos (

f(t,s) = araze cos scost, cos ssint, sin s cost, sin s sin t) (3.8)

or

f(t,S) =

C1C2
V]cos (2t + by)[/]cos (25 + b))

(cos scost, cos ssint, sin s cost, sin s sin t)
(3.9)

Proof. Let M be a flat surface with flat normal bundle. Then both K = 0 and
RP = 0. From (3.6), we have

2(W)? — b + k2 2(0)? — i + u?
R2+ () w4 (a)?

=1 (3.10)

85



and from (3.7), we get

2(R')” —hh" +h2  2(0)? — il + u®
h2 + (n')° u? (s) + (1)

(3.11)

By combining (3.10) and (3.11) and solving these differential equations we obtain
h(t) = are®'t and u(s) = aget?*

or

h(t) = N u(s) = #,
V/|cos (2t + by)| V/|cos (2s + bs)|
where a1, as, b1, bo, c1, o, k1 and ko are real constants. O

Remark 3.3. The surface M given by the parameterization (3.2) can be consid-
ered as the tensor product surface of two Euclidean planar curves, that is, let
a:R = R? a(s) = (a1(s),as(s)) and §: R — R?, B(t) = (B1(t), B2(t)) be two
Euclidean planar curves. The tensor product surface f (¢, s) is defined by

f=a®p:R? >R,

[t s) = (a1 (s)B1(t), a1(s)Ba(t), aa(s)B1(t), az(s)Ba(t)) .

In particular, for the curves a(s) = (u (s) cos s, u (s) sins) and B(t) = (h(t) cost, h(t) sint)
the tensor product of them gives the surface M given by the parameterization
(3.2).

Theorem 3.4. (See [9]). A regular tensor product surface x(s,t) = a(s)® B(t)
of two curves a : R — R?, a(s) = (u(s)coss,u(s)sins) or f: R — R?, B(t) =
(h(t) cost, h(t)sint) is flat if and only if either

1. « or B is a straight line through the origin.

2. «a and B are sinusoidal spirals, that is, the curves a and B8 are parame-
terized by

a(s) = cifcos((a+1)s+ b1)|7‘#1 (cos s, sin s)

1 B %1+1
cos <( + 1) t+ b2> ‘ (cost,sint)
a

3. « and B are logarithmic spirals, that is, the curves a and 3 are parame-
terized by

B(t) = c

a(s) = a1e"® (cos s,sins) and B(t) = aze’?! (cost,sint)

with ay,a92,b1,ba,c1,c2,k1 and ko are real constants, ay,as,c1,co > 0 and a #
—1.
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Remark 3.5. In [8] Yoon studied Vranceanu surface parameterized by
f(s,t) = (u(s) cos scost,u(s)cos ssint,u(s)sinscost,u(s)sinssint).

He proved that flat Vranceanu surface in E* has pointwise 1-type Gauss map
if and only if it is a Clifford torus. Also the normal bundle of flat Vranceanu
surface is flat, too.

Now we investigate flat surface M with flat normal bundle with pointwise
1-type Gauss map.

Theorem 3.6. Let M be flat surface with flat normal bundle given by the
parameterization (3.2). Then M has pointwise 1-type Gauss map if and only if
either

1. M is a Clifford torus, that is, the product of two plane circles with same
radius

2. It is the product of two logarithmic spirals which is parameterized by

flt,s) = ek (tEs) (cos scost,cos ssint, sin s cost, sin s sin t)
where k is non zero real constant.

Proof. Firstly, we assume that the flat surface M with flat normal bundle given
by the parameterization (3.8) has pointwise 1-type Gauss map. If necessary, by
an appropriate homothetic transformation we may assume that a; = as = 1.
Then we have h(t) = e*1* and u (s) = e*2*. By using (3.3), (3.4) and (3.5) we
have components of the second fundamental form and the connection forms as:

h’?l = 07 hi’2 =« (57t)a h;Q = ax (S7t)

hill :a(sat)a hzllZ =0, h§2 :a(s7t)

and
wiz = ba(s,t)w +ea(s,t)we, wiz=—a(st)ws, wia=a(st)w
wez = —a(s,t)wi+aa(s,t)wy woy = a(s,t)wa, wss = —ba(s,t)w +da(s,t)ws,

By covariant differentiation with respect to e; and es a straightforward calcu-
lation gives:

?elel = baes + aey, (3.12)
@6261 = Ccoeg — aes,

@eleg = —bae; — aeg,

662 €2 = —coel + axes + aey,

?eleg = ey — baey,

@82 e3 = «e; —aaey + daey

66164 = —ae; + baes,

@62 eq = —aey— daes,
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where

1 2k ko ko
Oé(S,t) = T, &= 1ab:7717
u(s)h(t) (1 + k2 + k3)2 (1+k2+k3)2 (1+k2)2
1
Ey (1+ K2 +K2)° ky (1+ k2 — k2
;o= MO+H 12),61: 1(1 1 k) . (3.13)
(1+k2)2 (1+k2)2 (14 k2 +k2)2

By using (2.1) and (3.12) and after straight-forward computations, the Lapla-
cian AG of the Gauss map G can be expressed as

AG = (4 + a2) a’e; ANey + (c+d)a’ey Aes — (2b+ ad) oe; Aey
+(2b — ac) a?ex Aes — (¢ +d) aey Aey. (3.14)

We suppose that the flat surface M with flat normal bundle has pointwise 1-type
Gauss map. From (1.1) and (3.14), we get

(4+a*)a® = f+ f(C,e1 Nea) (3.15)
(c+d)a* = f(C,e1 Aes) (3.16)
(—2b —ad) a® = [ (C,e1 Aey) (3.17)
(2b — ac)a® = f(C, ez Aes3) (3.18)
—(c+d)a? = f(C,ea Ney) (3.19)
Then, we have
(Crez Neg) =0 (3.20)
By differentiating (3.20) with respect to ey, we get
(Cre1 Neg)+ (Crea ANeg) =0 (3.21)
When we take the derivative of (3.20) with respect to es, we have
(Crer ANeg) 4+ (Crea Aes) —a{Ciea Neg) =0 (3.22)
If we evaluate the derivative of (3.22) with respect to ey again, we get
2(Cie1 Ne2) = —(c+d)(Crer ANes)+ac(C,er Aey) (3.23)

+ad (C,ea Nes) + (c+d) (C,ea Aey)

By using (3.15), (3.16), (3.17), (3.18), (3.19), (3.21) and (3.23) we then have
f= (4 +a® + (¢ + d)° + abc + a’cd — abd) a? = Ad? (3.24)

that is, a smooth function f depends on s and ¢. Differentiating (3.24) with
respect to ey, we have
e1(f) = —2cAa®. (3.25)
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On the other hand, by differentiating (3.19) with respect to e; and by using
(3.12), (3.15), (3.17), (3.18), (3.19), (3.24) and (3.25) we obtain

4b* + 2abd — 2abc — a*cd — (¢ + d)® = 0. (3.26)
By substituting (3.13) into (3.26) we get
(kT —k3) (1 + kT + k3 + kik3) =0 (3.27)

and from (3.27) we obtain that k; = £ko. In particular, if we take as k1 = ko =
0, we obtain Clifford torus. For the other cases, we obtain the tensor product
surface of two logarithmic spirals.

Conversely, we assume that k? = k3. In that case the flat surface M with
flat normal bundle is given by the parametrization (3.8) has pointwise 1-type
Gauss map for the function

f(s,t) = (4 +a®+ (c+ d)2 + abc + a%ed — abd) o? = Aa?
and the constant vector

Z((él—i—a — )61/\€2+(C+d)61/\€3—(2b+ad)€1/\64)
—|—A((Zb—ac)eg/\eg—(C+d)eg/\e4).

Now, we assume that the flat surface M with flat normal bundle is given by the
parametrization (3.9). We research whether this surface has pointwise 1-type
Gauss map. We can write as

-

u(s) = ¢ (ecos(28)) 2,

where if cos(2s) > 0 ( resp. < 0), then e =1 (resp. = —1). Analogously, we

can write as .

h(t) = ca(dcos(2t)) 2,

where if cos (2t) > 0 (< 0, respectively) then § = 1(—1,respectively). By using
(3.3), (3.4) and (3.5) we have components of the second fundamental form and
the connection forms as:

hip =0, hiy=—A(s,t), h3y=x(s,t)A(s,1)

hll =-A (57t)7 hé112 = %(Sat)/\ (57t)a h32 = - (1 + %2(S7t)) A (S,t)

and

w12 = T(Svt))‘(sat)wl+B(S’t))‘2(87t)w2
waa = T (s, ) A(s,t)wr+ B (s,1) N (s,1) wa.
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By covariant differentiation with respect to e; and es, we get

66161 = TMAeg — Aey, (3.28)
@62 e1 = ﬁ)\zeg — Aesg + xhey,
65162 = —TXey — Ae3z + x)ey,
66262 = —BA%e; + xhes — (1 + %2) ey,
@eleg = deg + They,
65263 = Xe1 — xhes + fN\%ey
66164 = dey — xAeg — Thes,
66264 = —xle; + (1 + %2) es — BA%es,
where
(s,t) = 2 (esin (2s)) (6 sin (2t)) 17
(1= (esin(25))° (3sin (20))%)
(esin (29) (5 cos (2t))
t =
c1c2 (0sin (2t)) ((5 cos (25))” — (esin (25))* (8 cos (2t))2>
B (57 t) = 5 5 )
(ecos(2s))2 (dcos (2t))2
3 3
1 3 2 2 3 2 2
MNst) = = (ecos(2s))2 (0 cos (2t)) y

cicz (1 — (esin(2s))* (8 sin (2t))2) :

By using (2.1), straight-forward computation the Laplacian AG of the Gauss
map G can be expressed as

AG = (4 + 552 + %4) Aey Aeg + (—62 (3)\) -8 (2 + %2) )\3) el Nes
+ (62 ((2 + %2) /\) — ﬁ%x\3) e1Ney (3.29)
+ (61 (eN)+ 71 (2 + %2) /\2) ey N es+ (—61 ((2 + %2) )\) + T%)\Q) es N ey.

We suppose that the flat surface M with flat normal bundle has pointwise 1-type
Gauss map. From (1.1) and (3.29), we get

(445" + ") N = f+ [ (C,e1 Nea), 3.30

(3.30)
—e2 (3eA) = B (24 37) X = [ (C,e1 Nes), (3.31)
ex (24 5°)A) — BseX® = f(C,e1 Aes), (3.32)
e1 (3eN) + 7 (24 32) X = f(C,ex Nes), (3.33)
—e1 (24 ) A) + 73X = f(C,ea Ney). (3.34)

Then we have
<C, es N\ €4> =0. (335)
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By differentiating (3.35) with respect to e;, we get
(Crea Neg) —(Crep Neg) + 2 (Creq ANes) = 0.
By considering together with (3.31), (3.33), (3.34) and (3.36), we have

—e1 ((2+ 5) A) + 73eA% 4 3 (e1 (3N) + 7 (2 + %) A?)
+ez (5A) + B (24 57) X = 0.

On the other hand, after some long computations we have

[N

e () = 4 (esin (2s)) (e cos (25))% (6 cos (2t)) 7

c1C2 (1 — (esin (2s))* (6 sin (21&))2)

[N

_4A (£ cos (2s)) (Osin (2t)) (8 cos (2¢)) ™"
es () 3

(1 — (esin (2s5))? (8 sin (2t)) )
_ 4X(esin (23))2 (e cos (25)) " (0 sin (2t)) (6 cos (2t))
(1= (esin (29))* (@sin (20))°) "

((e cos(2s))?(dsin(2t)) (6 cos(2t))?)

(& )\ = 3
1) 2c3(1 — (esin(2s))2(0sin(2t))2)3

( — 3+ 2(esin(2s))?

+ (esin(2s)2(@ sin(2t))2)
and
ea(\) :4((—3 +2(8sin(2t))? + (e sin(2s))?(8 sin(2¢))?)
— (6sin(2t))%(—3 + 2(esin(2s))* + (ssin(25))2(§sin(2t))2)),
_ A(esin(2s)(e cos(2s)) % (6 cos(2 t))%)
2

crea(1 — (esin(2s))2(8sin(2t))2):

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

By combining (3.38), (3.39), (3.40) and (3.41) with (3.37), we obtain that this
equation is not satisfied. So, there is no flat surface with flat normal bundle
given by the parameterization (3.9) which has pointwise 1-type Gauss map. O

Corollary 3.7. Let M be flat surface with flat normal bundle given by the
parameterization (3.2). M has pointwise 1-type Gauss map of the first kind if

and only if it is a Clifford Torus.

Proof. From Theorem 3.6 the flat surface M with flat normal bundle is given
by the parameterization (3.2) has pointwise 1-type Gauss map for the function

f(s,t) = Aa?
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and the constant vector
1
C = ((4 +a® —A)eg ANeg+ (c+d)ey Aez — (2b+ ad)e; A 64)

1
+ ((2() —ac)eg N ez — (c+ d)eg A 64)

with k% = k2, where
A= (4+a2+ (c+d)2+abc+a20d—abd) .

We assume that the surface M has pointwise 1-type Gauss map of the first
kind. Then, we obtain C = 0, that is, all components of C' is zero. Then, we
get k1 = ko = 0. This completes the proof. O

Theorem 3.8. An oriented minimal surface M in the Euclidean space E* has
pointwise 1-type Gauss map of the first kind if and only if M has a flat normal
bundle [6].

Theorem 3.9. There exists no minimal surface given by the parameterization
(8.2) with pointwise 1-type Gauss map of the first kind.

Proof. We suppose that the surface M given by the parameterization (3.2) is
minimal surface with pointwise 1-type Gauss map of the first kind. From Theo-
rem 3.8 we have RP = 0. Since the surface M is minimal and its normal bundle
is flat then (2.2) and (2.4) imply, respectively

h3, +h3, =0 and hi, + hi, =0 (3.42)
h?z (hzlll - h%Q) + hilz (hgz - h?l) =0. (3.43)
By combining (3.3), (3.4), (3.42) and (3.43) we have
h3, = hi, = h3y = 0. (3.44)
The equation (3.44) conflicts with the regularity of the surface. O

Theorem 3.10. (See [6]). A non-planar minimal oriented surface M in the
Euclidean space E* has pointwise 1-type Gauss map of the second kind if and
only if, with respect to some suitable local orthonormal frame {e1,ea,e3,e4} on
M, the shape operators of M are given by

_(r O _( 0 ep
A3<0 _p)andA4<€p O),

where € = £1 and p is a smooth non-zero function on M.

Theorem 3.11. Let M be minimal surface given by the parameterization (3.2).
Then M has pointwise 1-type Gauss map of the second kind if and only if it is
parametrized by

bd

f(t,s) = ———=(cos scost, cos ssint,sin s cost, sin s sin t)
|cos (25 + ¢)]
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or

bd . . s
f{t,s) = —————=(cos scost,cosssint,sin scost,sin ssint)
|cos (2t + ¢)|

where b, d and ¢ are real constants.

Proof. We assume that M is a minimal surface with pointwise 1-type Gauss
map of second kind. In that case the mean curvature of M is zero and we have

h3, =0 (3.45)
and
Ry + h3y = 0. (3.46)
By using (2.5), the Laplacian AG of the Gauss map G is written as

AG = ||h||> G + 2RPes A ey, (3.47)

where R” # 0. In the opposite case, M has pointwise 1-type Gauss map of the
first kind. By using (2.4), (3.45) and (3.46) we get

RP =2h3,h1, #0. (3.48)

Since M has pointwise 1-type Gauss map of the second kind, from (1.1) and
(3.47) we have
Ih]* G + 2RPes Aes = fG + fC (3.49)

for some smooth non-zero function f on M and some constant vector C. Since
the vector C' is a linear combination of e; A eg, e1 A es, e1 A ey, €3 Aeg, ea A ey,
es A eq. From (3.49) we get

Al = f (14 (C\ex Aea)) (3.50)
2RP = f(C ez Nes) #0 (3.51)

and
<C761 A 63> = <C’7€1 A €4> = <Cv ez N 63> = <Ca ez N\ €4> =0

Since h3, is not equal to zero on M, it follows that| k| # 0 or (C,e; A eg) # —1.
Differentiating (C,e; A e3) = 0 with respect to e; and ey, we get

h?2 <C, er N €2> + hélll <C, es N\ €4> =0 (352)

and
his (Crez Aey) =0, (3.53)

respectively. On the other hand, differentiating (C, ey A e4) = 0 with respect to
e1 and es, we have

his (Crer Aeg) =0 (3.54)

and
h’:l),2 <O, (WA €4> + hill <C, er N\ €2> =0, (355)
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respectively. The equation (3.54) implies that hiy = 0 or (C,e; Aeg) = 0. If
(C,e1 Aeg) = 0 then from (3.55) we get hi, (C,e3 Aes) = 0. hiy is not equal
to zero on M. Hence we have (C,e3 Aes) = 0 and (3.51) implies that RP = 0.
This is a contradiction. So (C,e; A eg) # 0 and hiy = 0. By using (3.52) and
(3.55) we obtain

(hh) = (hiy)". (3.56)

From (3.45) and (3.3) we get @ = 0 or A’ = 0. Firstly we assume that o’ # 0.
Then we have © = d =constant. By considering together with (3.3), (3.4), (3.46)

and (3.56) we obtain
h(t) = S —

v/ |cos (2t + b)|
Now we assume that @ 7# 0. Then we have h = d = constant. By using (3.3) and
(3.4) with h = d, we can see that (3.56) is satisfied directly. So, if we consider
(3.4), (3.46) for h = d we obtain

Cc

V/|cos (2s + b)|’

u(s) =

where b, ¢ and d are real constants.

If we consider as both & = 0 and A’ = 0, then the surface M is not minimal
surface.

On the other hand by using (3.47), (3.48), (3.50), (3.51), (3.55) and (3.56)
(or see the proof of Theorem 5 in [6]) we can find the function f and the constant
vector C' as

f(s) =8 (n3,)" (3.57)

and
e1 N\ e ez N\ ey
2 T
Hence the minimal surface M has pointwise 1-type Gauss map of the second
kind for the function f and the constant vector C' given by (3.57) and (3.58),
respectively. This completes the proof. O

C = (3.58)
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