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1 INTRODUCTION

In late 1970, the theory of finite type submanifolds of Euclidean submanifolds
was introduced by B.-Y. Chen, [7]. Since then, many mathematicians have
characterized or classified submanifolds of Euclidean space or pseudo—Euclidean
space in terms of finite type. Later, B.-Y.Chen and P. Piccinni extended the no-
tion of finite type of submanifolds to Gauss map of submanifolds, [8]. The report
[9] and the second edition of above mentioned book [10] are useful references to
understand recent developments and open problems of this area.

A smooth map ¢ : M — E from a (pseudo)-Riemannian manifold into
a (pseudo)-Euclidean space is called of finite type if it has a finite spectral
decomposition

k
¢=do+ Y i (L.1)

i=1
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where ¢ is a constant map, and each non—constant maps ¢; satisfies A¢; = \;¢;
for some constant \; € R. If the spectral decomposition (1.1) contains exactly
k terms with different values for \;, then the map ¢ is called of k-type. Thus,
a (pseudo)-Riemannian submanifold M of a (pseudo)-Euclidean space has 1-
type Gauss map v if and only if Av = A(v + C) for some A € R and for some
constant vector C.

On the other hand, it was observed that the Gauss map of some submanifolds
such as helicoid, catenoid, right cones in E? and Enneper’s hypersurfaces in E?H
satisfies

Av=fr+0C) (1.2)

for some smooth function f on M and some constant vector C, [13, 16]. This
gives a new terminology, namely that, a submanifold of a (pseudo)-Euclidean
space is said to have pointwise 1-type Gauss map if it satisfies (1.2). In partic-
ular, if C' is zero, it is said to be of the first kind. Otherwise, it is said to be of
the second kind.

Also, rotational surfaces in a (pseudo)—Euclidean space which are the main
focus of the present paper are another active research field in differential geom-
etry. In 1919, C. L. Moore introduced generel rotational surfaces in the four
dimensional Euclidean space, [19]. A rotational surface in E* is a surface left
invariant by a rotation in E* which is defined as a linear transformation of pos-
itive determinant preserving distance and leaving one point fixed. Moreover, F.
Cole studied the general theory of rotation in E4, [12].

The rotational surfaces in the pseudo—Euclidean space E3, called Vranceanu
rotational surfaces which is a particular case of the rotational surfaces studied
in this article were studied for different purposes. The complete classification
of Vranceanu rotational surfaces in E3 with zero mean curvature was obtained
in [15]. It was proved that a flat rotational surface in E5 with pointwise 1-type
Gauss map is either the product of two plane hyperbolas or the product of a
plane circle and a plane hyperbola, [17].

In [1], F. K. Aksoyak and Y. Yayli gave a classification of flat general rota-
tional surfaces with pointwise 1-type Gauss map in the pseudo-Euclidean space
[E3 which includes similar results given in [17].

Recently, Y. Aleksieva, V. Milousheva and N. C. Turgay studied general
rotational surfaces in the pseudo-Euclidean space E3 with zero mean curvature
vector in [2] and then the first author, E. Canfes and U. Dursun classified such
rotational surfaces with pointwise 1-type Gauss map in [4].

Moreover, there are many studies about the rotational surfaces in the pseudo—
Euclidean space and different spaces with pointwise 1-type Gauss map, [3, 11,
18],

On the other hand, pseudo—umbilical submanifolds are also well-known and
have been studied in many articles, [6, 14, 5].

In this article, we consider two families of rotational surfaces in the pseudo—
Euclidean space E3 with profile curves lying in 2-dimensional planes. First, we
determine the pseudo—umbilical rotational surfaces in these families. Then, we
show that there exists no a non—planar pseudo—umbilical rotational surface in
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these families with pointwise 1-type Gauss map of the second kind. Finally, we
give a classification of all such pseudo—umbilical surfaces in E4 with pointwise
1-type Gauss map of the first kind.

2 PRELIMINARIES

2.1 Basics of Submanifold Theory

Let E}* be the m—dimensional pseudo—Euclidean space with the canonical metric
given by

m—t m
g = (dl‘z)Z — (dl‘i)Z,
i=1 i=m—t+1
where (z1,z2,...,2,,) is a standard rectangular coordinate system in E}*.

For a point xg € E}* and ¢ # 0, we put

S Hxo,¢) = {x €EE" | (x —x0,x —Xo) =c '} if ¢ >0,

Hy" ! (x0,¢) = {x € E}"| | (x —x0,x —Xo) =c '} if ¢ <0,

where (,) denotes the indefinite inner product associated to §. S{*~*(xo, ¢) and
H;”_l(x[), ¢) are called, respectively, a pseudo—sphere and a pseudo—hyperbolic
space. When X is the origin, we simply denote S{"~*(0,¢) and H* (0, c) by
Sm1(¢) and HI" ! (c).

A vector v € EI" is called spacelike (resp., timelike) if (v,v) > 0 or v = 0
(resp., (v,v) < 0). A vector v is called lightlike if it is non—zero and it satisfies
(v,v) = 0.

From now on, we use the following convention on the range of indices:

1<ABC,...<n+2, 1<ijk,...<n, n+1<rst,...<n+2.

Let M be an oriented n—dimensional submanifold in an (n + 2)-dimensional
pseudo—FEuclidean space IES”. We denote the Levi-Civita connections of E;H'Q

and M respectively, by V and V. Then, we choose an oriented local orthonormal

frame {ej,..., epy2} on M with e4 = (ea,e4) = £1 such that ey,..., e, are
tangent to M and e, 11, e,4+2 are normal to M in IE§+2. Denote the dual frame
and connection forms associated to {e1, ..., e 12} by {w!, ..., w"*?} and wap,
respectively.

The Gauss and Weingarten formulas are given, respectively, by

n n+2
r
Ve,€i = g gjwij(ex)e; + E erhler,
j=1 r=n+1
n+2
veker = - Ar(ek) + E €sw'rs(ek)657
s=n+1
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where hj; is the coefficients of the second fundamental form h, and A, the
Weingarten map in the direction e,..

The mean curvature vector H and the scalar curvature S of M in Ej ™2 are
defined, respectively, by

n+2

1
H=- .
- Z ertrd,e,, (2.1)
r=n+1
S =n*(H,H) — |[n]?, (2.2)

where [|h|* = Y7, Zf:iﬂ eigjer(hi;)®. A submanifold M is called mini-
mal if H vanishes identically and a non—minimal submanifold is called pseudo—
umbilical if there exist a smooth function p such that Ay = pl, where [ is an
identity n x n matrix and p is a smooth function on M. In particular, the
Gaussian curvature K which is also defined by K = e3detAs + e4det Ay is half
of the scalar curvature S for n = 2. If K vanishes identically, the surface M is
called flat.

The Codazzi equations of M in IE§+2 are given by

gk = Mk
n+2 n (23)
i = ei(hip) + Z eshjpwsr(ei) — Zfé (wje(ei)hpy, + wu(ei)h?j) .
s=n-+1 =1

Also, from the Ricci equation of M in E§+2, we have

n

RD<ejvek§eTa€S) = <[A€r7A€s}(ej>7ek> = Zgi (h:k fj - :j fk) ) (2'4)

i=1

where RP is the normal curvature tensor.

The gradient of a smooth function f on M is defined by Vf = > g;e;(f)es,
i=1

n
and the Laplace operator acting on M is A = > g,(V,e; — e;€;).
i=1

1=

2.2 Gauss Map

Let G(m — n,m) be the Grassmannian manifold consisting of all oriented (m —
n)—planes through the origin of a pseudo—Euclidean space E* with index ¢,
and let A" " E" be the vector space obtained by the exterior product of m —
n vectors in Ej*. Let fi, A--- A fi . and g;; A---Ag;, . be two vectors
in A" E", where {f1, f2,..., fm} and {g1,92,...,gm} are two orthonormal
bases of E". Define an indefinite inner product ((,)) on A" " E" by

({(fis Ao A fis Gin Ao N Gi_)) = det((fiys 95,))- (2.5)

Therefore, for some positive integer s, we may identify A" " E with some

pseudo-Euclidean space EY, where N = (. ™ ). The map v : M — G(m —

m—n
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n,m) C EY from an oriented pseudo-Riemannian submanifold M into G(m —
n,m) defined by
v(p) = (ens1 Aenga A--- Aem)(p) (2.6)
is called the Gauss map of M which assigns to a point p in M the oriented
(m — n)-plane through the origin of E}* and parallel to the normal space of M
at p, [17].
We put e = ((v, V) = €pt16nt2 - em = £1 and

—~ SV=1(1) in EY ife=1
N—-1 _ s s
M e) = { HY'(-1)  in EN if e=—1.

Then the Gauss image v(M) can be viewed as v(M) C MN=1(¢).

Lemma 2.1. Let M be an n—dimensional submanifold of a pseudo—FEuclidean
space ]E:""'Q. Then, the Laplacian of the Gauss map v = epy1 A epia is given by

Av =||h|]*v +2 ZejskRD(ej, €k’ €nt1;€nt2)€j N e
j<k
+ V(trdp 1) Aengz + eng1 A V(trd,2) (2.7)

+n Z EjWn+1)(n+2)(€j) H Aej,
j=1

where ||h||? is the squared length of the second fundamental form, RP the normal
curvature tensor, and V(trA,) the gradient of trA,.

Let M be a surface in the pseudo-Euclidean space E3. We choose a local
orthonormal frame field {e1, es, €3, €4} on M such that e, es are tangent to M,
and es, e4 are normal to M. Let C be a vector field in A\*E$ = ES. Since the
set {ea Aep|l < A < B <4} is an orthonormal basis for ES, the vector C' can
be expressed as

C= Y  caepCapeales, (2.8)

1<A<B<4
where Cap = ((C,eq A eg)).

Lemma 2.2. A vector C in A’E3 = ES written by (2.8) is constant if and only
if the following equations are satisfied for i =1,2

e; (C12) =e3h3Ch3 + eahiyCry — e3h3 Oo — e4h} Cau, (2.9)
e; (C13) = — eahiyCha + e4w3a(e;)Cra + e2wia(e;)Cog — e4hi; Caa, (2.10)
€; (Cra) = — €2h?2012 — e3w34(e;)C13 + cawia(e;)Cog + 53}1?1034, (2.11)
e (Cas) =e1h3Cra — e1w12(e;)Chs + eswsa(e;)Cos — 4hi5Ca, (2.12)
ei (C2a) =£1h},C1a — 1wia(e;)Cra — e3wsa(e;)Cos + e3hCay, (2.13)
e; (O34) =e1h} C13 — e1h3 Cry + e2hi5yC3 — £2h3Cay. (2.14)
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3 ROTATIONAL SURFACES IN Ej

In this section, we focus on rotational surfaces in E5 with profile curves which lie
in 2-dimensional planes, and we obtain some geometric quantities about these
surfaces.

Let M;(b) and Ms(b) be rotational surfaces in the pseudo—Euclidean space
[E5 whose profile curves lie in 2—planes. These rotational surfaces defined below
are invariant under some rotation subgroup of rotation group in E3. We can
choose a profile curve « of M;(b) in the yw-plane as a(u) = (0, y(u),0,w(u)),
defined on an open subset I of R and thus the parametrization of M (b) is given
by

My (b) : r1(u,v) = (w(u) sinh v, y(u) cosh(bv), y(u) sinh(bv), w(u) coshv) (3.1)

with some constant b > 0, where v € I is an open subset of R and v € R.

We consider the following orthonormal moving frame field e, es,e3,e4 on
M;(b) in Ej such that ej,es are tangent to M (b), and es3, e, are normal to
M1 (b)

10 10

61255, 6222%7 (3.2)

e3 = %(y’(u) sinh v, w’(u) cosh(bv), w' (u) sinh(bv), 3’ (u) cosh v), (3.3)

€4 = & (by(u) cosh v, w(w) sinh(bv), w(w) cosh(bv), by(u) sinh v), (3.4)
q

where A = \/e(y*(u) —w(w)) # 0, q = /E@W) PP # 0, and
e = sgn(y’*(u) — w?(u)), * = sgn(w?(u) —b2y2(u)). Then ey = —e4 = *, 5 =
—E&3 = ¢&.

By a direct calculation, we have the components of the second fundamental
form and the connection forms as

1 1

B = s Py (1) = 0y (), By = w0 (0) ~ o' () (),
(3.5)

ity = S (o (1) — ('), by = iy =k, =0, (36)
nz(er) = o Pyl (@) — w' (), wisles) =0, (37)
na(er) = S ) (1) = gy (W), waslea) =0 (33

For the rotational surface My (b), we can choose a profile curve § in the zz—
plane as S(u) = (z(u), 0, z(u), 0) defined on an open subset I of R, and thus the
parametrization of My (b) is given by

Ms(b) : ro(u,v) = (x(u) cosv, z(u) sinw, z(u) cos(bv), z(u) sin(bv)) (3.9)
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with some constant b > 0, where u € I is an open subset of R and v € (0, 2m).

We consider the following orthonormal moving frame fields e, ez, e3,e4 on
M5(b) in E3 such that e;,ey are tangent to My (b), and es,eq are normal to
M2 (b)

10 10
R PR P (3.10)
e3 = %(z’(u) cos v, 2’ (u) sinw, 2’ (u) cos(bv), 2’ (u) sin(bv)), (3.11)
eq4 = —62* (bz(u) sinv, —bz(u) cos v, z(u) sin(bv), —x(u) cos(bv)), (3.12)

where A = \/5(x’2(u) —2%(u)) # 0, § = /e*(22(u) — b222(u)) # 0, and ¢ =
€

sgn(z’?(u) — 2% (1)), e* = sgn(x2(u) — b22%(u)). Then 61 = —e4 = *, €5 =
—E&3 = ¢&.

By a direct computation, we have the components of the second fundamental
form and the connection forms as

3 1 2 / /! 3 1 / " / "
hiy = /—T?(b z(u)z' (u) — z(u)z'(u)), hiy = ﬁ(z (w)z" (u) — 2’ (u)2" (u)),
(3.13)
ity = Sz ()’ () = )=/ (w), Ay = Wy = by =0, (3.14)
wis(er) = é(b%(u)z’(u) —z(u)x'(u)), wia(es) =0, (3.15)
wsqer) = ;6;) (z(uw)2' (u) — z(u)x' (u)), wss(ez) = 0. (3.16)

Therefore, we have the mean curvature vector H, Gaussian curvature K and
normal curvature RP for the rotational surfaces for M;(b) and My (b) as follows

1
H= —5(55*@‘1 + h3y)es, (3.17)
K = &*(h13)* — ehi1h3y, (3.18)
RP (e, e0;e3,e4) = hiy(ehsy — e*h3)). (3.19)

On the other hand, by using the Codazzi equation (2.3) we obtain

ea(hdy) = e*hiwsa(er) + wia(er)(e*h; — ehiy), (3.20)
ea(hy) = —ehiawsa(er) + 2% higwia(er). (3.21)

The rotational surfaces M;(b) and M3 (b) defined by (3.1) and (3.9) for b = 1,
z(u) = y(u) = f(u)sinhwu and z(u) = w(u) = f(u)coshu are also known as
Vranceanu rotational surface, where f(u) is a smooth function, [15, 17].
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4 PsSEuDO-UMBILICAL ROTATIONAL
SURFACES IN Ej

In this section, we obtain all pseudo—umbilical rotational surfaces M;(b) and
My (b) in E3 defined by (3.1) and (3.9).
By the definition of pseudo—umbilical surface and (3.17), the rotational sur-
faces M;(b) and Ma(b) are pseudo—umbilical if and only if e*h3; = ch3,.
Hence, from (3.5) the surface M;(b) is pseudo—umbilical if and only if the
component functions y(u) and w(u) of the profile curve « satisfy the following
differential equation

2y(w)w’ (u) — ww)y (u
! (u)y ()~ ()" () — (" ()~ ' () y(w)zm() 1523,2((3;”/ =

By a simple computation, it can be shown that a non—planar rotational
surface M, (b) in E5 defined by (3.1) for b = 1 is pseudo—umbilical if and only if
its profile curve is given by

w(u) +y(u) = Ao(w(u) — y(u))* (4.2)

for some constants A\g # 0 and g such that (w(u) — y(uw))*o is real valued.

If uo = 1 and A2 # 1, from (4.2) we have y(u) = ioﬁw( ), that is, the
profile curve « is a part of line passing through the origin. It can be shown
easily that M (1) is an open part of a timelike plane in 5.

If pp = —1, then (4.2) implies that w?(u) — y(u) = Ao which gives (a-5)
and (a—6) in Theorem 4.2 for b = 1.

From equations (3.5), (3.6) we obtain h}, = —ce*h$; in the case b = 1. Also,
we know that such a relation e*h$; = eh3, exists. Hence, from the equation
(3.18) we conclude:

= 0. (4.1)

Proposition 4.1. Let M;(1) be a rotational surface in E3 given by (3.1). Then,
My (1) is pseudo—umbilical if and only if M1(1) is flat.

n [17], flat Vranceanu surfaces which are pseudo—umbilical surfaces M (1)
were studied for different purposes. It was proven that the Vranceanu rotational
surface is flat if f(u) = Ae#*, where A and p are real numbers. Then, we have
e* = sgn(A?e?%) = 1 and € = sgn(A\?(1—p?)e?**) = 1 for |u| < 1and e = —1 for
|¢] > 1. Thus, the Vranceanu rotational surface is spacelike pseudo—umbilical
for |u| < 1 and timelike pseudo—umbilical for |u| > 1.

For ¢y # 0 and 6 > 0, we define the following functions

h? 7 — b2 cosh?
®(0,b,¢e,e" / (sinhy COS2 n) dn (4.3)
e*cd( smh n —b%cosh®n) —¢
and
h? b2 sinh?
Q0,b,¢e,e" / 0052 - SH; ) dn. (4.4)
e*cd(cosh”n — b2sinh“n) + ¢

such that the integrands are real valued functions.
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Theorem 4.2. Let M;(b) be a non—planar rotational surface in the pseudo—-
Euclidean space E3 given by (3.1). Then,

(a)

(b)

M;(b) is a spacelike pseudo—umbilical surface in E3 if and only if the com-
ponent functions of the unit speed profile curve « of My(b) are given by
one of the followings:

(a-1)

y(0) = ce?? cosh @ and w(0) = ce? @ sinh 6,
where () = ®(60,b,1,1), 0 < b < 1 and cZ(sinh? 6 — b? cosh® ) > 1 for
some cg € R and c € Ry ;
(a-2)

y(0) = ce? @ cosh @ and w(0) = ce?? sinh 6,
where Y(0) = ©(0,b,—1,—1), b > 1 and ¢ € Ry. In this case, the surface
My (b) has negative definite metric;

(a-3)
y(0) = ce? D sinh 0 and w(6) = ce?? cosh 6,

where o(0) = Q(0,0,1,1),0<b <1 and c € Ry;

(a-4)

y(0) = ce? D sinh 0 and w() = ce?? cosh 6,
where o(0) = Q0,b,—1,-1), b > 1 and 3(b*>sinh*# — cosh® @) > 1 for
some cg € R and ¢ € Ry. In this case, the surface My(b) has negative
definite metric;

(a-5)
y(0) = rosinh @ and w(f) = rocoshd,

where rg is non—zero constant and 0 < b < 1. In this case, the surface
M, (b) lies in H3(—ry?) C Ej;

(a-6)
y(0) =rocoshf and w(f) = rgsinh 6,

where ro is non—zero constant and b > 1. In this case, the surface M (b)
has negative definite metric and is lying in S3(ry %) C ES.

M (b) is a timelike pseudo—umbilical surface in B3 if and only if the com-
ponent functions of the unit speed profile curve o of My(b) are given by
one of the followings:

(b-1)
y(0) = ce?@ cosh @ and w(0) = ce?? sinh 6,

where 1h(0) = ®(6,b,1,—1), b > 1 and (b cosh? § —sinh? §) > 1 for some
coeRandceRy;

(v-2)
y(0) = ce?@ cosh @ and w(h) = ce?® sinh 6,
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where (0) = ®(0,b,—1,1),0<b< 1 and c € Ry;

(b-3)
y(0) = ce? D sinh 0 and w(6) = ce?? cosh 6,

where o(0) = Q(0,b,1,—-1), b > 1 and c € Ry ;

(b-4)

y(0) = ce? P sinh 0 and w(f) = ce??) cosh 6,
where o(0) = Q(A,b,—1,1), 0 < b < 1 and cZ(cosh? § — b%sinh? ) > 1 for
some cp € R and c € Ry ;

(b-5)
y(0) =rosinh @ and w(f) = rocosh b,

where 1o is non-zero constant and b > 1. In this case, the surface M;(b)
lies in H3 (—ry?) C E3;
(b-6)

y(0) =rocoshf and w(f) = rgsinh 6,

where rg is non—zero constant and 0 < b < 1. In this case, the surface
M (b) lies in S3(rg?) C E4.

Proof. Let M (b) be a rotational surface in the pseudo-Euclidean space E3 given
by (3.1). From (3.7) and (3.8), it is seen that wia(e1) and ws4(e1) are functions
of u, and wyz(e2) = wsa(e2) = 0. By using these facts and (3.19), we have

—ea(wsaler)) + e wia(er)wsa(er) = hiy(ehd, — *hi,). (4.5)

Now, assume that Mj(b) is pseudo-umbilical surface, i.e., e*h3; = eh3,. Then
(4.5) implies

62(&134(61)) — E*wlg(el)w;g4(61) = 0 (46)
This equation together with the second equation in (3.2) and the first equation
in (3.7) gives

d __w(ww'(w) — by(u)y'(u)
@(UJ34(€1)) = — w2(u) — b2y2(u) UJ34(€1). (47)

It is clear that wss(e1) = 0 is a solution of (4.7). In this case, from (3.8)
we have w(u)w’(u) — y(u)y'(u) = 0 which implies that w?(u) — y?(u) = A, for
non-zero constant Ag.

For A\g = 73 > 0, we put y(u) = rosinh §(u) and w(u) = ro cosh §(u), where
0(u) is a smooth function with ¢(u) # 0. So, ¢ = sgn(r20’*(u)) = 1 and
e* = sgn(r2(cosh? O(u) — b?sinh?A(u))) = 1 for 0 < b < 1 and * = —1 for
b > 1. Therefore, for 0 < b < 1, M;(b) is a spacelike pseudo-umbilical surface
which gives (a-5), and for b > 1, M;(b) is a timelike pseudo-umbilical surface
which gives (b-5). Moreover, M (b) lies in H3(—ry~2) C Ej.

For \g = —r¢ < 0, we put y(u) = rgcoshf(u) and w(u) = rgsinhO(u),
where 6(u) is a smooth function with 6(u) # 0. So & = sgn(—r20"*(u)) = —1,
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and e* = sgn(r2(sinh? O(u) — b cosh®B(u))) = —1 for b > 1 and &* = 1 for
0 < b < 1. Then, for b > 1, M;(b) is a spacelike pseudo-umbilical surface
with negative definite metric which gives (a—6), and for 0 < b < 1, M;(b) is
a timelike pseudo-umbilical surface which gives (b—6). Moreover, M (b) lies in
S3(ro~2) C Ej.

Let w34 # 0 on M;. By combining (3.8) and (4.7) we have

e b(uw(u)w'(u) — y(u)y' ()
Ve w2 (a) — PRy ey () — w(w))

for some constant by # 0.
Now we suppose that the profile curve « is a unit speed curve, that is,
y'?(u) —w'?(u) = e. Thus equation (4.8) becomes

= by (4.8)

w(w)w'(u) — y(u)y'(u) —c
Ve ) - ) Y

for some constant ¢q # 0.
Without loss of generality, firstly we choose y(u) = r(u) cosh §(u) and w(u) =
r(u)sinh @(u). Then, from y'*(u) — w'?(u) = € and (4.9) we have, respectively,

dr
o \/5* (sinh® @ — b2 cosh® §)

edu?® = dr? — r2df? and du = —

from which we obtain that

* A2 (ol 2 _ K2 2
dr 5200'(sn;h 0—b coih 0) i, (4.10)
e*cg(sinh® 6 — b2 cosh”0) — ¢

where e*c3(sinh? @ — b2 cosh® #) > e. The integration of (4.10) gives
() = ce® @05 (4.11)

where ®(6, b, e, *) is defined by (4.3) and ¢ € R,.. From e* = sgn(r2(u)(sinh? 6(u)—
b2 cosh? A(u))), we get ¢* = 1 for 0 < b < 1, and ¢* = —1 for b > 1. Now, by
(4.11) and (4.3) we have (a—1) if e = ¢* = 1, and the integrand in (4.11) is defined
for ¢3(sinh?® @ — b? cosh® @) > 1 for some ¢y € R; (a-2) if e = e* = —1; (b-1) if
€ = —* = 1, and the integrand in (4.3) is defined for ¢Z(b® cosh®  —sinh? ) > 1
for some ¢y € R; (b-2) if e* = —e = 1..

Secondly, let y(u) = r(u)sinh8(u) and w(u) = r(u) coshf(u). By a similar
calculation we obtain that

r(0) = ceSHObesT) (4.12)
where Q(0, b, &, £*) is defined by (4.4) and ¢ € R. From £* = sgn(r?(u)(cosh? 6 (u)—

b2 sinh? O(u))) we get e* =1 for 0 < b < 1, and e* = —1 for b > 1. Now by con-
sidering (4.12) and (4.4) we have (a-3) if e =¢* =1, and (a4) if e = &* = -1
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and the integrand in (4.4) is defined for ¢(b®sinh®6@ — cosh®@) > 1 for some
co € R; (b-3)if e = —e* =1, and (b4) if e* = —e = 1 and the integrand in
(4.4) is defined for ¢3(cosh® @ — b?sinh? @) > 1 for some ¢ € R.

Conversely, we assume that y(6) and w(6) are given by y(8) = ce®(®?==") cosh @
and w(#) = ce®®?=") sinh @ for the function ® defined by (4.3). Since y(6) and
w(0) satisfy (4.6), equation (4.5) implies that either hiy, = 0 or e*h3; = chi,.
From the first equation in (3.6) we have h{, # 0 as 9% + 0, and thus e*h}; =
eh3,. In the case, the profile curve a given by y() = ce*5<") sinh @ and
w(f) = ce2@==7) cosh @ for the function Q defined by (4.4), by a similar argu-
ment it can be seen that *h3; = eh3,. Therefore M;(b) is a pseudo—umbilical
surface in the pseudo—Euclidean space [Ej. O

Similarly, we determine pseudo—umbilical rotational surface Ma(b) in E3
given by (3.9). From (3.13), the surface Ms(b) is pseudo—umbilical if and only
if the component functions x(u) and z(u) of the profile curve 8 satisfy the
differential equation

2z(u)x’ (u) — z(u)2' (u
z/(u)m”(u)—x'(u)z”(u)—(x’z(u)—z’z(u))b <x3 (u() z b22§ (3) W . (4.13)

By a simple computation, it can be shown that a non—planar rotational
surface Mz (b) in E3 defined by (3.9) for b = 1 is pseudo—umbilical if and only if
its profile curve is given by

z(u) — z(u) = Ao(2(u) + z(u))*o (4.14)

for some constants \g # 0 and pg such that (z(u) + x(u))H° is real valued.

If yo = 1 and N2 # 1, from (4.14) we have z(u) = L‘rf\‘gz(u), that is the
profile curve 3 is a part of a line passing through the origin. It can be shown
easily that M(1) is an open part of a spacelike plane in [Ej.

If yo = —1, then (4.14) implies that 22(u) — 2%(u) = Ao which gives (b-5)
and (b—6) in Theorem 4.4 for b = 1.

Because of the similar reason for the rotational surface Mj(b), we have the

following:

Proposition 4.3. Let M(1) be a rotational surface in B3 given by (3.9). Then,
M5 (1) is pseudo—umbilical if and only if Ma(1) is flat.

In [17], it was shown that the Vranceanu rotational surface is flat if f(u) =
Aet" where A and p are real numbers. For the function f(u), the component
function z(u) and z(u) satisfy the solution (4.14). Moreover, £* = sgn(—A2e?*%) =
—1 and € = sgn(A?(1 — p?)e?**) =1 for |u| < 1, and e = —1 for |u| > 1. Thus,
the Vranceanu rotational surface is timelike pseudo—umbilical for |u| < 1 and it
is spacelike pseudo—umbilical with negative definite metric for |u| > 1.

We omit the proof of the next theorem because it is similar to the proof of
Theorem 4.4.
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For ¢y # 0 and 0 > 0 let us define the following functions

sh” 1) — b2 sinh”
B(0,b, e, ) /\/ e*¢p?(cosh” n — b2 sinh” n) dn (4.15)

£*Gy2(cosh? n — b2 sinh? ) — ¢

and

h% 5 — b2 cosh?
Q(0,b,e, " / =" Go® (sinh o L. (4.16)
0 g*co?( Smh n—b2cosh®n) +¢

such that the integrands are real valued functions.

Theorem 4.4. Let Ms(b) be a non-planar rotational surface in the pseudo-
Euclidean space E3 given by (3.9). Then,

(a) Ms(b) is a spacelike pseudo—umbilical surface in B3 if and only if the com-
ponent functions of the unit speed profile curve 8 of Ma(b) are given by
one of the followings:

(a-1)

z(0) = ¥ cosh @ and z(0) = ce¥?) sinh 0,
where ¥(0) = ®(0,b,1,1), 0 < b < 1 and éo>(cosh®  — b?sinh? @) > 1 for
some ¢g € R and ¢ € Ry;
(a-2)

z(0) = ¥ ® cosh @ and z(0) = ce¥?) sinh 0,
where (0) = ®(0,b,—1,—1), b > 1 and ¢ € R,.. In this case, the surface
M5 (b) has negative definite metric;

(a-3)

z(0) = ce? @ sinh 0 and z(0) = ce??) cosh 6,
where p(0) = Q(0,b,1,1), 0 < b < 1 and ¢ € Ry;
(a-4)

z(0) = ce? @ sinh 0 and z(0) = ce?? cosh 6,

where ©(0) = Q0,b,—1,—1), b > 1 and é%(b? cosh? § — sinh? §) > 1 for
some ¢y € R and ¢ € Ry. In this case, the surface Mz(b) has negative
definite metric;

(a-5)
x(0) = rosinh 6 and z(6) = rocosh 6,

where rqg is non—zero constant and 0 < b < 1. In this case, the surface
My (b) lies in H3(—ry?) C Ej;

(a-6)
x(0) = rocosh® and z(0) = rosinh 6,

where 1o is non—zero constant and b > 1. In this case, the surface Ms(b)
is lying in S3(ry ?) C ES with negative definite metric.
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(b) My (b) is a timelike pseudo—umbilical surface in E3 if and only if the com-
ponent functions of the unit speed profile curve 5 of May(b) are given by
one of the followings:

(b-1)

z(0) = ¥ cosh @ and z(0) = ce¥?) sinh 6,

(0)
where (0) = ®(0,b,1,—1), b > 1 and &>(b*sinh?® 0 — cosh? ) > 1 for
some ¢p € R and ¢ € Ry ;

(b-2)

z(0) = ce? @ cosh§ and 2(0) = ce¥®) sinh 6,
where ¥(0) = ®(0,b,—-1,1),0<b<1 andc € Ry;

(b-3)
(0) = ce? D sinh 6 and 2(0) = ce?? cosh 6,

where p(0) = Q(0,b,1,—1),b>1 and ¢ € R, ;
(b-4)

8

z(0) = ¥ sinh 6 and 2(0) = e?? cosh 6,
where () = Q(0,b,—1,1), 0 < b < 1 and é&>(sinh* § — b% cosh? ) > 1
for some ép € R and ¢ € Ry ;

(b-5)
x(0) = rosinh @ and z(6) = rocosh6,

where 1q is non—zero constant and b > 1. In this case, the surface Ms(b)
lies in H3 (—ry?) C E3;
(b-6)

z(0) = rocosh® and z(0) = rosinh 6,

where 1o is non—zero constant and 0 < b < 1. In this case, the surface
My (b) lies in S3(ry?) C E4.

5 PsSEuDO-UMBILICAL ROTATIONAL
SURFACES WITH POINTWISE 1-TYPE
GAUSS MAP

In this section, we determine pseudo—umbilical rotational surfaces in Ej with
pointwise 1-type Gauss map of first kind and second kind.

Theorem 5.1. There exists no pseudo—umbilical rotational surface defined by
(3.1) in E3 with pointwise 1-type Gauss map of the second kind.
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Proof. Assume that M;(b) is a non—planar regular pseudo—umbilical rotational
surface in Ej defined by (3.1). From equation (2.7), the Laplacian of the Gauss
map of the rotational surface M (b) is given by

Av =||h|]*v + 2h1,(e*h3y — chiy)er Aes
+wag(e1)(eh3, +e*hidy)er Aes + (ee¥ea(hd)) + ea(hdy))ea Aeyq.  (5.1)
Since e*h3; = eh3,, equation (5.1) becomes
Av = ||h||?v + 2eh3 was(e1)er A e + 2ehiowsa(er)ea A ey. (5.2)
Suppose that M;(b) has pointwise 1-type Gauss map of second kind. Comparing
(1.2) and (5.2), we get
F(1+ec"Caa) = ||RI[%, (
fO13 = —2*h3 waa(er), (
fCoy = —2c*hiywaa(er), (
Cr2 = C14 = Ca3 = 0. (
From (5.4) and (5.5), we have
hisC13 — h3,Cay = 0. (5.7)
When we write the equation (2.9) for ¢ = 2, we obtain
h3,C15 — hi,Cay = 0. (5.8)

Since the Gauss map v is of the second kind, equations (5.7) and (5.8) must
have non-zero solution which implies (h3;)? — (h,)? = 0. Considering the first
equations in (3.5) and (3.6) we have (b2 —1)(b2y2 (w)w'? (u) —w? (u)y2(u)) = 0. If
b2y (u)w'” (u) — w2 (u)y'(u) = 0, by solving this equation and 32 (u) —w'>(u) =
eA? together, we get
2 2
Yy (u) = —55*b22—2y2(u) and w'”(u) = —se*A—wQ(u) (5.9)

where A = \/5(y’2(u) —w'?(u)) # 0 and ¢ = /e*(w2(u) — b2y%(u)) # 0. Dif-
ferentiating equations in (5.9) with respect to u, we obtain

2\’ 2
2w (w) = e (5 ) 9P0) — 26y ),
v — e (A2 S
2w (w)w" (u) = —ee <q2> w?(u) — 2ee b2?w(u)w (u). (5.10)

If we multiply these equations by —w’ 2 (u) and g/ 2(u), respectively, add them
and also consider b2y2(u)w'”(u) — w?(u)y?(u) = 0, we get

v ) (3" (0) = ')y — e=* (‘;‘) (') = w(uy' @) ) =
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If y = yg = constant or w = wy = constant on an open subinterval of I, then
M (b) is a planar rotational surface. So, there is an open subinterval J C I on
which ¢/ (u)w’(u) # 0, that is,

2
Y (ww” (u) = w'(u)y” (u) - 65*%(62y(U)W'(U) —w(u)y'(u)) = 0.

Using (3.5) in the equation given above, we get ce*h$; + h3, = 0. On the
other hand, from the equation (3.17), M;(b) has zero mean curvature vector in
E3. That is contradiction to the definition of pseudo—umbilical surface. Thus,
b2y (w)w'” (u) — w2 (u)y(u) # 0, that is, b = 1. In this case, h¥, = —ee*h3, and
wsq(e1) = —ee*wia(er). Thus, from the equation (5.7) Ci3 = —ee*Cay. Also,
(34 is zero due to equations (2.10) and (2.13) for ¢ = 2. On the other hand,
from (2.11) for i = 1 we have ws4(e;) = 0 which is a contradiction. Thus, v is
not of pointwise 1-type of second kind. O

Note that if v were pointwise 1-type of first kind, it would happen that from
(5.4) and (5.5) h$; = hiy = 0 or w3y(e1) = 0.

In the case h$; = hiy, = 0, My(b) lies in the 3-dimensional Euclidean or
pseudo—FEuclidean space. Thus, we omit this case.

For ws4(e1) = 0, we obtained some class of rotational surfaces as seen in the
proof of Theorem 4.2. Thus, we conclude the following results:

Corollary 5.2. Let My(b) be a non—planar pseudo—umbilical rotational surface
in the pseudo—Euclidean space B3 given by (3.1). Then, My has pointwise 1—
type Gauss map of the first kind if and only if the component functions of the
unit speed profile curve a of My (b) are given by one of the followings:
i.
y(0) = rosinh @ and w(f) = rocoshd,
where ro is non—zero constant and 0 < b < 1. In this case, My(b) is a
spacelike surface in Hi{’(frJQ) C E3;
y(0) = rocosh @ and w(f) = rysinh 6,
where 1o is non—zero constant and b > 1. In this case, M;(b) is a spacalike
surface with negative definite metric in S3(ry?) C Es;
y(0) = rosinh @ and w(f) = rocoshb,
where ro is non—zero constant and b > 1. In this case, M;(b) is a timelike
surface in H}(—ry?) C Ej;
0.
y(0) =rocoshf and w(f) = rgsinh 6,
where ro is non—zero constant and 0 < b < 1. In this case, M;y(b) is a
timelike surface in S3(ry?) C Ej.
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Similarly, we can give same results for the rotational surface Mz (b) given by
(3.9).

Theorem 5.3. There exists no pseudo—umbilical rotational surface defined by
(3.9) in E3 with pointwise 1-type Gauss map of the second kind.

Corollary 5.4. Let Ms(b) be a non—planar pseudo-umbilical rotational surface
in the pseudo—FEuclidean space E3 given by (3.9). Then, My has pointwise 1-

type

Gauss map of the first kind if and only if the component functions of the

unit speed profile curve B of Ma(b) are given by one of the followings:

1.

x(0) = rosinh§ and z(6) = rocosh 6,

where o is non—zero constant and 0 < b < 1. In this case, Ma(b) is a
spacelike surface lying in H?(—TO_Z) C E4;

x(0) = rocosh® and z(0) = rosinh 6,

where ro is non—zero constant and b > 1. In this case, Ma(b) is a spacelike
surface lying in S3 (raz) C E3 with negative definite metric;

x(0) = rosinh 6 and z(6) = rocosh 6,

where g is non—zero constant and b > 1. In this case, Ms(b) is a timelike
surface lying in H3(—ry?) C E4

0.
z(0) = rocosh® and z(0) = rosinh 6,
where ro is non—zero constant and 0 < b < 1. In this case, Ma(b) is a
timelike surface lying in S§(rg?) C Ej.
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