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Burcu Bektaş: Istanbul Technical University, Faculty of Science and Letters, Department of
Mathematics, 34469, Maslak, Istanbul, Turkey, e-mail:bektasbu@itu.edu.tr,
Elif Özkara Canfes: Istanbul Technical University, Faculty of Science and Letters, Department
of Mathematics, 34469, Maslak, Istanbul, Turkey, e-mail:canfes@itu.edu.tr,
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1 Introduction

In late 1970, the theory of finite type submanifolds of Euclidean submanifolds
was introduced by B.-Y. Chen, [7]. Since then, many mathematicians have
characterized or classified submanifolds of Euclidean space or pseudo–Euclidean
space in terms of finite type. Later, B.-Y.Chen and P. Piccinni extended the no-
tion of finite type of submanifolds to Gauss map of submanifolds, [8]. The report
[9] and the second edition of above mentioned book [10] are useful references to
understand recent developments and open problems of this area.

A smooth map φ : M −→ Ems from a (pseudo)–Riemannian manifold into
a (pseudo)–Euclidean space is called of finite type if it has a finite spectral
decomposition

φ = φ0 +

k∑
i=1

φi, (1.1)
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where φ0 is a constant map, and each non–constant maps φi satisfies ∆φi = λiφi
for some constant λi ∈ R. If the spectral decomposition (1.1) contains exactly
k terms with different values for λi, then the map φ is called of k-type. Thus,
a (pseudo)–Riemannian submanifold M of a (pseudo)–Euclidean space has 1–
type Gauss map ν if and only if ∆ν = λ(ν + C) for some λ ∈ R and for some
constant vector C.

On the other hand, it was observed that the Gauss map of some submanifolds
such as helicoid, catenoid, right cones in E3 and Enneper’s hypersurfaces in En+1

1

satisfies
∆ν = f(ν + C) (1.2)

for some smooth function f on M and some constant vector C, [13, 16]. This
gives a new terminology, namely that, a submanifold of a (pseudo)–Euclidean
space is said to have pointwise 1–type Gauss map if it satisfies (1.2). In partic-
ular, if C is zero, it is said to be of the first kind. Otherwise, it is said to be of
the second kind.

Also, rotational surfaces in a (pseudo)–Euclidean space which are the main
focus of the present paper are another active research field in differential geom-
etry. In 1919, C. L. Moore introduced generel rotational surfaces in the four
dimensional Euclidean space, [19]. A rotational surface in E4 is a surface left
invariant by a rotation in E4 which is defined as a linear transformation of pos-
itive determinant preserving distance and leaving one point fixed. Moreover, F.
Cole studied the general theory of rotation in E4, [12].

The rotational surfaces in the pseudo–Euclidean space E4
2, called Vranceanu

rotational surfaces which is a particular case of the rotational surfaces studied
in this article were studied for different purposes. The complete classification
of Vranceanu rotational surfaces in E4

2 with zero mean curvature was obtained
in [15]. It was proved that a flat rotational surface in E4

2 with pointwise 1–type
Gauss map is either the product of two plane hyperbolas or the product of a
plane circle and a plane hyperbola, [17].

In [1], F. K. Aksoyak and Y. Yaylı gave a classification of flat general rota-
tional surfaces with pointwise 1–type Gauss map in the pseudo–Euclidean space
E4

2 which includes similar results given in [17].
Recently, Y. Aleksieva, V. Milousheva and N. C. Turgay studied general

rotational surfaces in the pseudo–Euclidean space E4
2 with zero mean curvature

vector in [2] and then the first author, E. Canfes and U. Dursun classified such
rotational surfaces with pointwise 1–type Gauss map in [4].

Moreover, there are many studies about the rotational surfaces in the pseudo–
Euclidean space and different spaces with pointwise 1–type Gauss map, [3, 11,
18].

On the other hand, pseudo–umbilical submanifolds are also well–known and
have been studied in many articles, [6, 14, 5].

In this article, we consider two families of rotational surfaces in the pseudo–
Euclidean space E4

2 with profile curves lying in 2–dimensional planes. First, we
determine the pseudo–umbilical rotational surfaces in these families. Then, we
show that there exists no a non–planar pseudo–umbilical rotational surface in
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these families with pointwise 1–type Gauss map of the second kind. Finally, we
give a classification of all such pseudo–umbilical surfaces in E4

2 with pointwise
1–type Gauss map of the first kind.

2 Preliminaries

2.1 Basics of Submanifold Theory

Let Emt be the m–dimensional pseudo–Euclidean space with the canonical metric
given by

g̃ =

m−t∑
i=1

(dxi)
2 −

m∑
i=m−t+1

(dxi)
2,

where (x1, x2, . . . , xm) is a standard rectangular coordinate system in Emt .
For a point x0 ∈ Emt and c 6= 0, we put

Sm−1
t (x0, c) =

{
x ∈ Emt | 〈x− x0,x− x0〉 = c−1

}
if c > 0,

Hm−1
t (x0, c) =

{
x ∈ Emt+1 | 〈x− x0,x− x0〉 = c−1

}
if c < 0,

where 〈, 〉 denotes the indefinite inner product associated to g̃. Sm−1
t (x0, c) and

Hm−1
t (x0, c) are called, respectively, a pseudo–sphere and a pseudo–hyperbolic

space. When x0 is the origin, we simply denote Sm−1
t (0, c) and Hm−1

t (0, c) by
Sm−1
t (c) and Hm−1

t (c).
A vector v ∈ Emt is called spacelike (resp., timelike) if 〈v, v〉 > 0 or v = 0

(resp., 〈v, v〉 < 0). A vector v is called lightlike if it is non–zero and it satisfies
〈v, v〉 = 0.

From now on, we use the following convention on the range of indices:

1 ≤ A,B,C, . . . ≤ n+ 2, 1 ≤ i, j, k, . . . ≤ n, n+ 1 ≤ r, s, t, . . . ≤ n+ 2.

Let M be an oriented n–dimensional submanifold in an (n+ 2)–dimensional
pseudo–Euclidean space En+2

2 . We denote the Levi–Civita connections of En+2
2

and M respectively, by ∇̃ and∇. Then, we choose an oriented local orthonormal
frame {e1, . . . , en+2} on M with εA = 〈eA, eA〉 = ±1 such that e1, . . . , en are
tangent to M and en+1, en+2 are normal to M in En+2

2 . Denote the dual frame
and connection forms associated to {e1, . . . , en+2} by {ω1, . . . , ωn+2} and ωAB ,
respectively.

The Gauss and Weingarten formulas are given, respectively, by

∇̃ekei =

n∑
j=1

εjωij(ek)ej +

n+2∑
r=n+1

εrh
r
iker,

∇̃eker =−Ar(ek) +

n+2∑
s=n+1

εsωrs(ek)es,
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where hrij is the coefficients of the second fundamental form h, and Ar the
Weingarten map in the direction er.

The mean curvature vector H and the scalar curvature S of M in En+2
2 are

defined, respectively, by

H =
1

n

n+2∑
r=n+1

εrtrArer, (2.1)

S = n2〈H,H〉 − ‖h‖2, (2.2)

where ‖h‖2 =
∑n
i,j=1

∑n+2
r=n+1 εiεjεr(h

r
ij)

2. A submanifold M is called mini-
mal if H vanishes identically and a non–minimal submanifold is called pseudo–
umbilical if there exist a smooth function ρ such that AH = ρI, where I is an
identity n × n matrix and ρ is a smooth function on M . In particular, the
Gaussian curvature K which is also defined by K = ε3detA3 + ε4detA4 is half
of the scalar curvature S for n = 2. If K vanishes identically, the surface M is
called flat.

The Codazzi equations of M in En+2
2 are given by

hrij,k = hrjk,i,

hrjk,i = ei(h
r
jk) +

n+2∑
s=n+1

εsh
s
jkωsr(ei)−

n∑
`=1

ε`
(
ωj`(ei)h

r
`k + ωk`(ei)h

r
`j

)
.

(2.3)

Also, from the Ricci equation of M in En+2
2 , we have

RD(ej , ek; er, es) = 〈[Aer , Aes ](ej), ek〉 =

n∑
i=1

εi
(
hrikh

s
ij − hrijhsik

)
, (2.4)

where RD is the normal curvature tensor.

The gradient of a smooth function f on M is defined by ∇f =
n∑
i=1

εiei(f)ei,

and the Laplace operator acting on M is ∆ =
n∑
i=1

εi(∇eiei − eiei).

2.2 Gauss Map

Let G(m− n,m) be the Grassmannian manifold consisting of all oriented (m−
n)–planes through the origin of a pseudo–Euclidean space Emt with index t,
and let

∧m−n Emt be the vector space obtained by the exterior product of m−
n vectors in Emt . Let fi1 ∧ · · · ∧ fim−n and gi1 ∧ · · · ∧ gim−n be two vectors

in
∧m−n Emt , where {f1, f2, . . . , fm} and {g1, g2, . . . , gm} are two orthonormal

bases of Emt . Define an indefinite inner product 〈〈, 〉〉 on
∧m−n Emt by

〈〈fi1 ∧ · · · ∧ fim−n , gi1 ∧ · · · ∧ gim−n〉〉 = det(〈fi` , gjk〉). (2.5)

Therefore, for some positive integer s, we may identify
∧m−n Emt with some

pseudo–Euclidean space ENs , where N =
(
m

m−n
)
. The map ν : M → G(m −
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n,m) ⊂ ENs from an oriented pseudo–Riemannian submanifold M into G(m −
n,m) defined by

ν(p) = (en+1 ∧ en+2 ∧ · · · ∧ em)(p) (2.6)

is called the Gauss map of M which assigns to a point p in M the oriented
(m− n)–plane through the origin of Emt and parallel to the normal space of M
at p, [17].

We put ε = 〈〈ν, ν〉〉 = εn+1εn+2 · · · εm = ±1 and

M̃N−1
s (ε) =

{
SN−1
s (1) in ENs if ε = 1

HN−1
s−1 (−1) in ENs if ε = −1.

Then the Gauss image ν(M) can be viewed as ν(M) ⊂ M̃N−1
s (ε).

Lemma 2.1. Let M be an n–dimensional submanifold of a pseudo–Euclidean
space En+2

t . Then, the Laplacian of the Gauss map ν = en+1 ∧ en+2 is given by

∆ν =||h||2ν + 2
∑
j<k

εjεkR
D(ej , ek; en+1, en+2)ej ∧ ek

+∇(trAn+1) ∧ en+2 + en+1 ∧∇(trAn+2)

+ n

n∑
j=1

εjω(n+1)(n+2)(ej)H ∧ ej ,

(2.7)

where ||h||2 is the squared length of the second fundamental form, RD the normal
curvature tensor, and ∇(trAr) the gradient of trAr.

Let M be a surface in the pseudo–Euclidean space E4
2. We choose a local

orthonormal frame field {e1, e2, e3, e4} on M such that e1, e2 are tangent to M ,

and e3, e4 are normal to M . Let C be a vector field in
∧2 E4

2 ≡ E6
4. Since the

set {eA ∧ eB |1 ≤ A < B ≤ 4} is an orthonormal basis for E6
4, the vector C can

be expressed as

C =
∑

1≤A<B≤4

εAεBCAB eA ∧ eB , (2.8)

where CAB = 〈〈C, eA ∧ eB〉〉.

Lemma 2.2. A vector C in Λ2E4
2 ≡ E6

4 written by (2.8) is constant if and only
if the following equations are satisfied for i = 1, 2

ei (C12) =ε3h
3
i2C13 + ε4h

4
i2C14 − ε3h

3
i1C23 − ε4h

4
i1C24, (2.9)

ei (C13) =− ε2h
3
i2C12 + ε4ω34(ei)C14 + ε2ω12(ei)C23 − ε4h

4
i1C34, (2.10)

ei (C14) =− ε2h
4
i2C12 − ε3ω34(ei)C13 + ε2ω12(ei)C24 + ε3h

3
i1C34, (2.11)

ei (C23) =ε1h
3
i1C12 − ε1ω12(ei)C13 + ε4ω34(ei)C24 − ε4h

4
i2C34, (2.12)

ei (C24) =ε1h
4
i1C12 − ε1ω12(ei)C14 − ε3ω34(ei)C23 + ε3h

3
i2C34, (2.13)

ei (C34) =ε1h
4
i1C13 − ε1h

3
i1C14 + ε2h

4
i2C23 − ε2h

3
i2C24. (2.14)
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3 Rotational Surfaces in E4
2

In this section, we focus on rotational surfaces in E4
2 with profile curves which lie

in 2–dimensional planes, and we obtain some geometric quantities about these
surfaces.

Let M1(b) and M2(b) be rotational surfaces in the pseudo–Euclidean space
E4

2 whose profile curves lie in 2–planes. These rotational surfaces defined below
are invariant under some rotation subgroup of rotation group in E4

2. We can
choose a profile curve α of M1(b) in the yw–plane as α(u) = (0, y(u), 0, w(u)),
defined on an open subset I of R and thus the parametrization of M1(b) is given
by

M1(b) : r1(u, v) = (w(u) sinh v, y(u) cosh(bv), y(u) sinh(bv), w(u) cosh v) (3.1)

with some constant b > 0, where u ∈ I is an open subset of R and v ∈ R.
We consider the following orthonormal moving frame field e1, e2, e3, e4 on

M1(b) in E4
2 such that e1, e2 are tangent to M1(b), and e3, e4 are normal to

M1(b):

e1 =
1

q

∂

∂v
, e2 =

1

A

∂

∂u
, (3.2)

e3 =
1

A
(y′(u) sinh v, w′(u) cosh(bv), w′(u) sinh(bv), y′(u) cosh v), (3.3)

e4 = −εε
∗

q
(by(u) cosh v, w(u) sinh(bv), w(u) cosh(bv), by(u) sinh v), (3.4)

where A =
√
ε(y′2(u)− w′2(u)) 6= 0, q =

√
ε∗(w2(u)− b2y2(u)) 6= 0, and

ε = sgn(y′
2
(u)− w′2(u)), ε∗ = sgn(w2(u)−b2y2(u)). Then ε1 = −ε4 = ε∗, ε2 =

−ε3 = ε.
By a direct calculation, we have the components of the second fundamental

form and the connection forms as

h3
11 =

1

Aq2
(b2y(u)w′(u)− w(u)y′(u)), h3

22 =
1

A3
(w′(u)y′′(u)− y′(u)w′′(u)),

(3.5)

h4
12 =

εε∗b

Aq2
(w(u)y′(u)− y(u)w′(u)), h3

12 = h4
11 = h4

22 = 0, (3.6)

ω12(e1) =
1

Aq2
(b2y(u)y′(u)− w(u)w′(u)), ω12(e2) = 0, (3.7)

ω34(e1) =
εε∗b

Aq2
(w(u)w′(u)− y(u)y′(u)), ω34(e2) = 0. (3.8)

For the rotational surface M2(b), we can choose a profile curve β in the xz–
plane as β(u) = (x(u), 0, z(u), 0) defined on an open subset I of R, and thus the
parametrization of M2(b) is given by

M2(b) : r2(u, v) = (x(u) cos v, x(u) sin v, z(u) cos(bv), z(u) sin(bv)) (3.9)
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with some constant b > 0, where u ∈ I is an open subset of R and v ∈ (0, 2π).
We consider the following orthonormal moving frame fields e1, e2, e3, e4 on

M2(b) in E4
2 such that e1, e2 are tangent to M2(b), and e3, e4 are normal to

M2(b):

e1 =
1

q̄

∂

∂v
, e2 =

1

Ā

∂

∂u
, (3.10)

e3 =
1

Ā
(z′(u) cos v, z′(u) sin v, x′(u) cos(bv), x′(u) sin(bv)), (3.11)

e4 = −εε
∗

q̄
(bz(u) sin v,−bz(u) cos v, x(u) sin(bv),−x(u) cos(bv)), (3.12)

where Ā =
√
ε(x′2(u)− z′2(u)) 6= 0, q̄ =

√
ε∗(x2(u)− b2z2(u)) 6= 0, and ε =

sgn(x′
2
(u)− z′2(u)), ε∗ = sgn(x2(u) − b2z2(u)). Then ε1 = −ε4 = ε∗, ε2 =

−ε3 = ε.
By a direct computation, we have the components of the second fundamental

form and the connection forms as

h3
11 =

1

Āq̄2
(b2z(u)x′(u)− x(u)z′(u)), h3

22 =
1

Ā3
(z′(u)x′′(u)− x′(u)z′′(u)),

(3.13)

h4
12 =

εε∗b

Āq̄2
(z(u)x′(u)− x(u)z′(u)), h3

12 = h4
11 = h4

22 = 0, (3.14)

ω12(e1) =
1

Āq̄2
(b2z(u)z′(u)− x(u)x′(u)), ω12(e2) = 0, (3.15)

ω34(e1) =
εε∗b

Āq̄2
(z(u)z′(u)− x(u)x′(u)), ω34(e2) = 0. (3.16)

Therefore, we have the mean curvature vector H, Gaussian curvature K and
normal curvature RD for the rotational surfaces for M1(b) and M2(b) as follows

H = −1

2
(εε∗h3

11 + h3
22)e3, (3.17)

K = ε∗(h4
12)2 − εh3

11h
3
22, (3.18)

RD(e1, e2; e3, e4) = h4
12(εh3

22 − ε∗h3
11). (3.19)

On the other hand, by using the Codazzi equation (2.3) we obtain

e2(h3
11) = ε∗h4

12ω34(e1) + ω12(e1)(ε∗h3
11 − εh3

22), (3.20)

e2(h4
12) = −εh3

22ω34(e1) + 2ε∗h4
12ω12(e1). (3.21)

The rotational surfaces M1(b) and M2(b) defined by (3.1) and (3.9) for b = 1,
x(u) = y(u) = f(u) sinhu and z(u) = w(u) = f(u) coshu are also known as
Vranceanu rotational surface, where f(u) is a smooth function, [15, 17].
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4 Pseudo–Umbilical Rotational
Surfaces in E4

2

In this section, we obtain all pseudo–umbilical rotational surfaces M1(b) and
M2(b) in E4

2 defined by (3.1) and (3.9).
By the definition of pseudo–umbilical surface and (3.17), the rotational sur-

faces M1(b) and M2(b) are pseudo–umbilical if and only if ε∗h3
11 = εh3

22.
Hence, from (3.5) the surface M1(b) is pseudo–umbilical if and only if the

component functions y(u) and w(u) of the profile curve α satisfy the following
differential equation

w′(u)y′′(u)−y′(u)w′′(u)−(y′
2
(u)−w′2(u))

b2y(u)w′(u)− w(u)y′(u)

w2(u)− b2y2(u)
= 0. (4.1)

By a simple computation, it can be shown that a non–planar rotational
surface M1(b) in E4

2 defined by (3.1) for b = 1 is pseudo–umbilical if and only if
its profile curve is given by

w(u) + y(u) = λ0(w(u)− y(u))µ0 (4.2)

for some constants λ0 6= 0 and µ0 such that (w(u)− y(u))µ0 is real valued.
If µ0 = 1 and λ2

0 6= 1, from (4.2) we have y(u) = λ0−1
λ0+1w(u), that is, the

profile curve α is a part of line passing through the origin. It can be shown
easily that M1(1) is an open part of a timelike plane in E4

2.
If µ0 = −1, then (4.2) implies that w2(u) − y2(u) = λ0 which gives (a–5)

and (a–6) in Theorem 4.2 for b = 1.
From equations (3.5), (3.6) we obtain h4

12 = −εε∗h3
11 in the case b = 1. Also,

we know that such a relation ε∗h3
11 = εh3

22 exists. Hence, from the equation
(3.18) we conclude:

Proposition 4.1. Let M1(1) be a rotational surface in E4
2 given by (3.1). Then,

M1(1) is pseudo–umbilical if and only if M1(1) is flat.

In [17], flat Vranceanu surfaces which are pseudo–umbilical surfaces M1(1)
were studied for different purposes. It was proven that the Vranceanu rotational
surface is flat if f(u) = λeµu, where λ and µ are real numbers. Then, we have
ε∗ = sgn(λ2e2µu) = 1 and ε = sgn(λ2(1−µ2)e2µu) = 1 for |µ| < 1 and ε = −1 for
|µ| > 1. Thus, the Vranceanu rotational surface is spacelike pseudo–umbilical
for |µ| < 1 and timelike pseudo–umbilical for |µ| > 1.

For c0 6= 0 and θ > 0, we define the following functions

Φ(θ, b, ε, ε∗) =

∫ θ

0

√
ε∗c20(sinh2 η − b2 cosh2 η)

ε∗c20(sinh2 η − b2 cosh2 η)− ε
dη (4.3)

and

Ω(θ, b, ε, ε∗) =

∫ θ

0

√
ε∗c20(cosh2 η − b2 sinh2 η)

ε∗c20(cosh2 η − b2 sinh2 η) + ε
dη. (4.4)

such that the integrands are real valued functions.
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Theorem 4.2. Let M1(b) be a non–planar rotational surface in the pseudo–
Euclidean space E4

2 given by (3.1). Then,

(a) M1(b) is a spacelike pseudo–umbilical surface in E4
2 if and only if the com-

ponent functions of the unit speed profile curve α of M1(b) are given by
one of the followings:

(a-1)
y(θ) = ceψ(θ) cosh θ and w(θ) = ceψ(θ) sinh θ,

where ψ(θ) = Φ(θ, b, 1, 1), 0 < b < 1 and c20(sinh2 θ − b2 cosh2 θ) > 1 for
some c0 ∈ R and c ∈ R+;

(a-2)
y(θ) = ceψ(θ) cosh θ and w(θ) = ceψ(θ) sinh θ,

where ψ(θ) = Φ(θ, b,−1,−1), b ≥ 1 and c ∈ R+. In this case, the surface
M1(b) has negative definite metric;

(a-3)
y(θ) = ceϕ(θ) sinh θ and w(θ) = ceϕ(θ) cosh θ,

where ϕ(θ) = Ω(θ, b, 1, 1), 0 < b ≤ 1 and c ∈ R+;

(a-4)
y(θ) = ceϕ(θ) sinh θ and w(θ) = ceϕ(θ) cosh θ,

where ϕ(θ) = Ω(θ, b,−1,−1), b > 1 and c20(b2 sinh2 θ − cosh2 θ) > 1 for
some c0 ∈ R and c ∈ R+. In this case, the surface M1(b) has negative
definite metric;

(a-5)
y(θ) = r0 sinh θ and w(θ) = r0 cosh θ,

where r0 is non–zero constant and 0 < b ≤ 1. In this case, the surface
M1(b) lies in H3

1(−r−2
0 ) ⊂ E4

2;

(a-6)
y(θ) = r0 cosh θ and w(θ) = r0 sinh θ,

where r0 is non–zero constant and b ≥ 1. In this case, the surface M1(b)
has negative definite metric and is lying in S3

2(r−2
0 ) ⊂ E4

2.

(b) M1(b) is a timelike pseudo–umbilical surface in E4
2 if and only if the com-

ponent functions of the unit speed profile curve α of M1(b) are given by
one of the followings:

(b-1)
y(θ) = ceψ(θ) cosh θ and w(θ) = ceψ(θ) sinh θ,

where ψ(θ) = Φ(θ, b, 1,−1), b ≥ 1 and c20(b2 cosh2 θ−sinh2 θ) > 1 for some
c0 ∈ R and c ∈ R+;

(b-2)
y(θ) = ceψ(θ) cosh θ and w(θ) = ceψ(θ) sinh θ,
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where ψ(θ) = Φ(θ, b,−1, 1), 0 < b < 1 and c ∈ R+;

(b-3)
y(θ) = ceϕ(θ) sinh θ and w(θ) = ceϕ(θ) cosh θ,

where ϕ(θ) = Ω(θ, b, 1,−1), b > 1 and c ∈ R+;

(b-4)
y(θ) = ceϕ(θ) sinh θ and w(θ) = ceϕ(θ) cosh θ,

where ϕ(θ) = Ω(θ, b,−1, 1), 0 < b ≤ 1 and c20(cosh2 θ − b2 sinh2 θ) > 1 for
some c0 ∈ R and c ∈ R+;

(b-5)
y(θ) = r0 sinh θ and w(θ) = r0 cosh θ,

where r0 is non–zero constant and b > 1. In this case, the surface M1(b)
lies in H3

1(−r−2
0 ) ⊂ E4

2;

(b-6)
y(θ) = r0 cosh θ and w(θ) = r0 sinh θ,

where r0 is non–zero constant and 0 < b < 1. In this case, the surface
M1(b) lies in S3

2(r−2
0 ) ⊂ E4

2.

Proof. Let M1(b) be a rotational surface in the pseudo–Euclidean space E4
2 given

by (3.1). From (3.7) and (3.8), it is seen that ω12(e1) and ω34(e1) are functions
of u, and ω12(e2) = ω34(e2) = 0. By using these facts and (3.19), we have

−e2(ω34(e1)) + ε∗ω12(e1)ω34(e1) = h4
12(εh3

22 − ε∗h3
11). (4.5)

Now, assume that M1(b) is pseudo-umbilical surface, i.e., ε∗h3
11 = εh3

22. Then
(4.5) implies

e2(ω34(e1))− ε∗ω12(e1)ω34(e1) = 0. (4.6)

This equation together with the second equation in (3.2) and the first equation
in (3.7) gives

d

du
(ω34(e1)) = −w(u)w′(u)− b2y(u)y′(u)

w2(u)− b2y2(u)
ω34(e1). (4.7)

It is clear that ω34(e1) = 0 is a solution of (4.7). In this case, from (3.8)
we have w(u)w′(u)− y(u)y′(u) = 0 which implies that w2(u)− y2(u) = λ0, for
non–zero constant λ0.

For λ0 = r2
0 > 0, we put y(u) = r0 sinh θ(u) and w(u) = r0 cosh θ(u), where

θ(u) is a smooth function with θ′(u) 6= 0. So, ε = sgn(r2
0θ
′2(u)) = 1 and

ε∗ = sgn(r2
0(cosh2 θ(u) − b2 sinh2 θ(u))) = 1 for 0 < b ≤ 1 and ε∗ = −1 for

b > 1. Therefore, for 0 < b ≤ 1, M1(b) is a spacelike pseudo-umbilical surface
which gives (a–5), and for b > 1, M1(b) is a timelike pseudo-umbilical surface
which gives (b–5). Moreover, M1(b) lies in H3

1(−r0
−2) ⊂ E4

2.
For λ0 = −r2

0 < 0, we put y(u) = r0 cosh θ(u) and w(u) = r0 sinh θ(u),

where θ(u) is a smooth function with θ′(u) 6= 0. So ε = sgn(−r2
0θ
′2(u)) = −1,
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and ε∗ = sgn(r2
0(sinh2 θ(u) − b2 cosh2 θ(u))) = −1 for b ≥ 1 and ε∗ = 1 for

0 < b < 1. Then, for b ≥ 1, M1(b) is a spacelike pseudo-umbilical surface
with negative definite metric which gives (a–6), and for 0 < b < 1, M1(b) is
a timelike pseudo-umbilical surface which gives (b–6). Moreover, M1(b) lies in
S3

2(r0
−2) ⊂ E4

2.
Let ω34 6= 0 on M1. By combining (3.8) and (4.7) we have

εε∗b(w(u)w′(u)− y(u)y′(u))√
ε∗(w2(u)− b2y2(u))

√
ε(y′2(u)− w′2(u))

= b0 (4.8)

for some constant b0 6= 0.
Now we suppose that the profile curve α is a unit speed curve, that is,

y′
2
(u)− w′2(u) = ε. Thus equation (4.8) becomes

w(u)w′(u)− y(u)y′(u)√
ε∗(w2(u)− b2y2(u))

= c0 (4.9)

for some constant c0 6= 0.
Without loss of generality, firstly we choose y(u) = r(u) cosh θ(u) and w(u) =

r(u) sinh θ(u). Then, from y′
2
(u)− w′2(u) = ε and (4.9) we have, respectively,

εdu2 = dr2 − r2dθ2 and du = − dr

c0

√
ε∗(sinh2 θ − b2 cosh2 θ)

from which we obtain that

dr

r
=

√
ε∗c20(sinh2 θ − b2 cosh2 θ)

ε∗c20(sinh2 θ − b2 cosh2 θ)− ε
dθ, (4.10)

where ε∗c20(sinh2 θ − b2 cosh2 θ) > ε. The integration of (4.10) gives

r(θ) = ceΦ(θ,b,ε,ε∗), (4.11)

where Φ(θ, b, ε, ε∗) is defined by (4.3) and c ∈ R+. From ε∗ = sgn(r2(u)(sinh2 θ(u)−
b2 cosh2 θ(u))), we get ε∗ = 1 for 0 < b < 1, and ε∗ = −1 for b ≥ 1. Now, by
(4.11) and (4.3) we have (a–1) if ε = ε∗ = 1, and the integrand in (4.11) is defined
for c20(sinh2 θ − b2 cosh2 θ) > 1 for some c0 ∈ R; (a–2) if ε = ε∗ = −1; (b–1) if
ε = −ε∗ = 1, and the integrand in (4.3) is defined for c20(b2 cosh2 θ−sinh2 θ) > 1
for some c0 ∈ R; (b–2) if ε∗ = −ε = 1..

Secondly, let y(u) = r(u) sinh θ(u) and w(u) = r(u) cosh θ(u). By a similar
calculation we obtain that

r(θ) = ceΩ(θ,b,ε,ε∗), (4.12)

where Ω(θ, b, ε, ε∗) is defined by (4.4) and c ∈ R+. From ε∗ = sgn(r2(u)(cosh2 θ(u)−
b2 sinh2 θ(u))) we get ε∗ = 1 for 0 < b ≤ 1, and ε∗ = −1 for b > 1. Now by con-
sidering (4.12) and (4.4) we have (a–3) if ε = ε∗ = 1, and (a–4) if ε = ε∗ = −1
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and the integrand in (4.4) is defined for c20(b2 sinh2 θ − cosh2 θ) > 1 for some
c0 ∈ R; (b–3) if ε = −ε∗ = 1, and (b–4) if ε∗ = −ε = 1 and the integrand in
(4.4) is defined for c20(cosh2 θ − b2 sinh2 θ) > 1 for some c0 ∈ R.

Conversely, we assume that y(θ) and w(θ) are given by y(θ) = ceΦ(θ,b,ε,ε∗) cosh θ
and w(θ) = ceΦ(θ,b,ε,ε∗) sinh θ for the function Φ defined by (4.3). Since y(θ) and
w(θ) satisfy (4.6), equation (4.5) implies that either h4

12 = 0 or ε∗h3
11 = εh3

22.
From the first equation in (3.6) we have h4

12 6= 0 as dθ
du 6= 0, and thus ε∗h3

11 =

εh3
22. In the case, the profile curve α given by y(θ) = ceΩ(θ,b,ε,ε∗) sinh θ and

w(θ) = ceΩ(θ,b,ε,ε∗) cosh θ for the function Ω defined by (4.4), by a similar argu-
ment it can be seen that ε∗h3

11 = εh3
22. Therefore M1(b) is a pseudo–umbilical

surface in the pseudo–Euclidean space E4
2.

Similarly, we determine pseudo–umbilical rotational surface M2(b) in E4
2

given by (3.9). From (3.13), the surface M2(b) is pseudo–umbilical if and only
if the component functions x(u) and z(u) of the profile curve β satisfy the
differential equation

z′(u)x′′(u)−x′(u)z′′(u)− (x′
2
(u)− z′2(u))

b2z(u)x′(u)− x(u)z′(u)

x2(u)− b2z2(u)
= 0. (4.13)

By a simple computation, it can be shown that a non–planar rotational
surface M2(b) in E4

2 defined by (3.9) for b = 1 is pseudo–umbilical if and only if
its profile curve is given by

z(u)− x(u) = λ0(z(u) + x(u))µ0 (4.14)

for some constants λ0 6= 0 and µ0 such that (z(u) + x(u))µ0 is real valued.
If µ0 = 1 and λ2

0 6= 1, from (4.14) we have x(u) = 1−λ0

1+λ0
z(u), that is the

profile curve β is a part of a line passing through the origin. It can be shown
easily that M2(1) is an open part of a spacelike plane in E4

2.
If µ0 = −1, then (4.14) implies that z2(u) − x2(u) = λ0 which gives (b–5)

and (b–6) in Theorem 4.4 for b = 1.
Because of the similar reason for the rotational surface M1(b), we have the

following:

Proposition 4.3. Let M2(1) be a rotational surface in E4
2 given by (3.9). Then,

M2(1) is pseudo–umbilical if and only if M2(1) is flat.

In [17], it was shown that the Vranceanu rotational surface is flat if f(u) =
λeµu, where λ and µ are real numbers. For the function f(u), the component
function x(u) and z(u) satisfy the solution (4.14). Moreover, ε∗ = sgn(−λ2e2µu) =
−1 and ε = sgn(λ2(1− µ2)e2µu) = 1 for |µ| < 1, and ε = −1 for |µ| > 1. Thus,
the Vranceanu rotational surface is timelike pseudo–umbilical for |µ| < 1 and it
is spacelike pseudo–umbilical with negative definite metric for |µ| > 1.

We omit the proof of the next theorem because it is similar to the proof of
Theorem 4.4.
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For c̄0 6= 0 and θ > 0 let us define the following functions

Φ̄(θ, b, ε, ε∗) =

∫ θ

0

√
ε∗c̄02(cosh2 η − b2 sinh2 η)

ε∗c̄02(cosh2 η − b2 sinh2 η)− ε
dη (4.15)

and

Ω̄(θ, b, ε, ε∗) =

∫ θ

0

√
ε∗c̄02(sinh2 η − b2 cosh2 η)

ε∗c̄02(sinh2 η − b2 cosh2 η) + ε
dη. (4.16)

such that the integrands are real valued functions.

Theorem 4.4. Let M2(b) be a non–planar rotational surface in the pseudo–
Euclidean space E4

2 given by (3.9). Then,

(a) M2(b) is a spacelike pseudo–umbilical surface in E4
2 if and only if the com-

ponent functions of the unit speed profile curve β of M2(b) are given by
one of the followings:

(a-1)
x(θ) = c̄eψ(θ) cosh θ and z(θ) = c̄eψ(θ) sinh θ,

where ψ(θ) = Φ̄(θ, b, 1, 1), 0 < b ≤ 1 and c̄0
2(cosh2 θ − b2 sinh2 θ) > 1 for

some c̄0 ∈ R and c̄ ∈ R+;

(a-2)
x(θ) = c̄eψ(θ) cosh θ and z(θ) = c̄eψ(θ) sinh θ,

where ψ(θ) = Φ̄(θ, b,−1,−1), b > 1 and c̄ ∈ R+. In this case, the surface
M2(b) has negative definite metric;

(a-3)
x(θ) = c̄eϕ(θ) sinh θ and z(θ) = c̄eϕ(θ) cosh θ,

where ϕ(θ) = Ω̄(θ, b, 1, 1), 0 < b < 1 and c̄ ∈ R+;

(a-4)
x(θ) = c̄eϕ(θ) sinh θ and z(θ) = c̄eϕ(θ) cosh θ,

where ϕ(θ) = Ω̄(θ, b,−1,−1), b ≥ 1 and c̄0
2(b2 cosh2 θ − sinh2 θ) > 1 for

some c̄0 ∈ R and c̄ ∈ R+. In this case, the surface M2(b) has negative
definite metric;

(a-5)
x(θ) = r0 sinh θ and z(θ) = r0 cosh θ,

where r0 is non–zero constant and 0 < b < 1. In this case, the surface
M2(b) lies in H3

1(−r−2
0 ) ⊂ E4

2;

(a-6)
x(θ) = r0 cosh θ and z(θ) = r0 sinh θ,

where r0 is non–zero constant and b > 1. In this case, the surface M2(b)
is lying in S3

2(r−2
0 ) ⊂ E4

2 with negative definite metric.
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(b) M2(b) is a timelike pseudo–umbilical surface in E4
2 if and only if the com-

ponent functions of the unit speed profile curve β of M2(b) are given by
one of the followings:

(b-1)
x(θ) = c̄eψ(θ) cosh θ and z(θ) = c̄eψ(θ) sinh θ,

where ψ(θ) = Φ̄(θ, b, 1,−1), b > 1 and c̄0
2(b2 sinh2 θ − cosh2 θ) > 1 for

some c̄0 ∈ R and c̄ ∈ R+;

(b-2)
x(θ) = c̄eψ(θ) cosh θ and z(θ) = c̄eψ(θ) sinh θ,

where ψ(θ) = Φ̄(θ, b,−1, 1), 0 < b ≤ 1 and c̄ ∈ R+;

(b-3)
x(θ) = c̄eϕ(θ) sinh θ and z(θ) = c̄eϕ(θ) cosh θ,

where ϕ(θ) = Ω̄(θ, b, 1,−1), b ≥ 1 and c̄ ∈ R+;

(b-4)
x(θ) = c̄eϕ(θ) sinh θ and z(θ) = c̄eϕ(θ) cosh θ,

where ϕ(θ) = Ω̄(θ, b,−1, 1), 0 < b < 1 and c̄0
2(sinh2 θ − b2 cosh2 θ) > 1

for some c̄0 ∈ R and c̄ ∈ R+;

(b-5)
x(θ) = r0 sinh θ and z(θ) = r0 cosh θ,

where r0 is non–zero constant and b ≥ 1. In this case, the surface M2(b)
lies in H3

1(−r−2
0 ) ⊂ E4

2;

(b-6)
x(θ) = r0 cosh θ and z(θ) = r0 sinh θ,

where r0 is non–zero constant and 0 < b ≤ 1. In this case, the surface
M2(b) lies in S3

2(r−2
0 ) ⊂ E4

2.

5 Pseudo–Umbilical Rotational
Surfaces with Pointwise 1–Type

Gauss Map

In this section, we determine pseudo–umbilical rotational surfaces in E4
2 with

pointwise 1–type Gauss map of first kind and second kind.

Theorem 5.1. There exists no pseudo–umbilical rotational surface defined by
(3.1) in E4

2 with pointwise 1–type Gauss map of the second kind.
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Proof. Assume that M1(b) is a non–planar regular pseudo–umbilical rotational
surface in E4

2 defined by (3.1). From equation (2.7), the Laplacian of the Gauss
map of the rotational surface M1(b) is given by

∆ν =||h||2ν + 2h4
12(ε∗h3

22 − εh3
11)e1 ∧ e2

+ ω34(e1)(εh3
11 + ε∗h3

22)e1 ∧ e3 + (εε∗e2(h3
11) + e2(h3

22))e2 ∧ e4. (5.1)

Since ε∗h3
11 = εh3

22, equation (5.1) becomes

∆ν = ‖h‖2ν + 2εh3
11ω34(e1)e1 ∧ e3 + 2εh4

12ω34(e1)e2 ∧ e4. (5.2)

Suppose that M1(b) has pointwise 1–type Gauss map of second kind. Comparing
(1.2) and (5.2), we get

f(1 + εε∗C34) = ||h||2, (5.3)

fC13 = −2ε∗h3
11ω34(e1), (5.4)

fC24 = −2ε∗h4
12ω34(e1), (5.5)

C12 = C14 = C23 = 0. (5.6)

From (5.4) and (5.5), we have

h4
12C13 − h3

11C24 = 0. (5.7)

When we write the equation (2.9) for i = 2, we obtain

h3
11C13 − h4

12C24 = 0. (5.8)

Since the Gauss map ν is of the second kind, equations (5.7) and (5.8) must
have non–zero solution which implies (h3

11)2 − (h4
12)2 = 0. Considering the first

equations in (3.5) and (3.6) we have (b2−1)(b2y2(u)w′
2
(u)−w2(u)y′2(u)) = 0. If

b2y2(u)w′
2
(u)−w2(u)y′2(u) = 0, by solving this equation and y′2(u)−w′2(u) =

εA2 together, we get

y′
2
(u) = −εε∗b2A

2

q2
y2(u) and w′

2
(u) = −εε∗A

2

q2
w2(u) (5.9)

where A =
√
ε(y′2(u)− w′2(u)) 6= 0 and q =

√
ε∗(w2(u)− b2y2(u)) 6= 0. Dif-

ferentiating equations in (5.9) with respect to u, we obtain

2y′(u)y′′(u) = −εε∗
(
A2

q2

)′
y2(u)− 2εε∗b2

A2

q2
y(u)y′(u),

2w′(u)w′′(u) = −εε∗
(
A2

q2

)′
w2(u)− 2εε∗b2

A2

q2
w(u)w′(u). (5.10)

If we multiply these equations by −w′2(u) and y′
2
(u), respectively, add them

and also consider b2y2(u)w′
2
(u)− w2(u)y′2(u) = 0, we get

y′(u)w′(u)

(
y′(u)w′′(u)− w′(u)y′′(u)− εε∗

(
A2

q2

)
(y(u)w′(u)− w(u)y′(u))

)
= 0.
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If y = y0 = constant or w = w0 = constant on an open subinterval of I, then
M1(b) is a planar rotational surface. So, there is an open subinterval J ⊂ I on
which y′(u)w′(u) 6= 0, that is,

y′(u)w′′(u)− w′(u)y′′(u)− εε∗A
2

q2
(b2y(u)w′(u)− w(u)y′(u)) = 0.

Using (3.5) in the equation given above, we get εε∗h3
11 + h3

22 = 0. On the
other hand, from the equation (3.17), M1(b) has zero mean curvature vector in
E4

2. That is contradiction to the definition of pseudo–umbilical surface. Thus,

b2y2(u)w′
2
(u)−w2(u)y′2(u) 6= 0, that is, b = 1. In this case, h4

12 = −εε∗h3
11 and

ω34(e1) = −εε∗ω12(e1). Thus, from the equation (5.7) C13 = −εε∗C24. Also,
C34 is zero due to equations (2.10) and (2.13) for i = 2. On the other hand,
from (2.11) for i = 1 we have ω34(e1) = 0 which is a contradiction. Thus, ν is
not of pointwise 1–type of second kind.

Note that if ν were pointwise 1–type of first kind, it would happen that from
(5.4) and (5.5) h3

11 = h4
12 = 0 or ω34(e1) = 0.

In the case h3
11 = h4

12 = 0, M1(b) lies in the 3–dimensional Euclidean or
pseudo–Euclidean space. Thus, we omit this case.

For ω34(e1) = 0, we obtained some class of rotational surfaces as seen in the
proof of Theorem 4.2. Thus, we conclude the following results:

Corollary 5.2. Let M1(b) be a non–planar pseudo–umbilical rotational surface
in the pseudo–Euclidean space E4

2 given by (3.1). Then, M1 has pointwise 1–
type Gauss map of the first kind if and only if the component functions of the
unit speed profile curve α of M1(b) are given by one of the followings:

i.
y(θ) = r0 sinh θ and w(θ) = r0 cosh θ,

where r0 is non–zero constant and 0 < b ≤ 1. In this case, M1(b) is a
spacelike surface in H3

1(−r−2
0 ) ⊂ E4

2;

ii.
y(θ) = r0 cosh θ and w(θ) = r0 sinh θ,

where r0 is non–zero constant and b ≥ 1. In this case, M1(b) is a spacalike
surface with negative definite metric in S3

2(r−2
0 ) ⊂ E4

2;

iii.
y(θ) = r0 sinh θ and w(θ) = r0 cosh θ,

where r0 is non–zero constant and b > 1. In this case, M1(b) is a timelike
surface in H3

1(−r−2
0 ) ⊂ E4

2;

iv.
y(θ) = r0 cosh θ and w(θ) = r0 sinh θ,

where r0 is non–zero constant and 0 < b < 1. In this case, M1(b) is a
timelike surface in S3

2(r−2
0 ) ⊂ E4

2.
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Similarly, we can give same results for the rotational surface M2(b) given by
(3.9).

Theorem 5.3. There exists no pseudo–umbilical rotational surface defined by
(3.9) in E4

2 with pointwise 1–type Gauss map of the second kind.

Corollary 5.4. Let M2(b) be a non–planar pseudo–umbilical rotational surface
in the pseudo–Euclidean space E4

2 given by (3.9). Then, M2 has pointwise 1–
type Gauss map of the first kind if and only if the component functions of the
unit speed profile curve β of M2(b) are given by one of the followings:

i.
x(θ) = r0 sinh θ and z(θ) = r0 cosh θ,

where r0 is non–zero constant and 0 < b < 1. In this case, M2(b) is a
spacelike surface lying in H3

1(−r−2
0 ) ⊂ E4

2;

ii.
x(θ) = r0 cosh θ and z(θ) = r0 sinh θ,

where r0 is non–zero constant and b > 1. In this case, M2(b) is a spacelike
surface lying in S3

2(r−2
0 ) ⊂ E4

2 with negative definite metric;

iii.
x(θ) = r0 sinh θ and z(θ) = r0 cosh θ,

where r0 is non–zero constant and b ≥ 1. In this case, M2(b) is a timelike
surface lying in H3

1(−r−2
0 ) ⊂ E4

2

iv.
x(θ) = r0 cosh θ and z(θ) = r0 sinh θ,

where r0 is non–zero constant and 0 < b ≤ 1. In this case, M2(b) is a
timelike surface lying in S3

2(r−2
0 ) ⊂ E4

2.
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