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Abstract. Spacelike hypersurfaces in the Lorentz-Minkowski (n+1)-
dimensional space Ln+1 can be endowed with another Riemannian metric,
the one induced by the Euclidean space Rn+1. The hypersurfaces with the
same mean curvature with respect to both metrics can be locally deter-
mined by a smooth function u satisfying |Du| < 1, and being the solution
to a certain partial differential equation. We call this equation the HR = HL

hypersurface equation. In the particular case in which n = 2 and both curva-
tures vanish, Kobayashi proved that the graphs determined by the solutions
of such equation are open pieces of spacelike planes or helicoids, in the re-
gion where they are spacelike. In this manuscript we prove the existence of
a family of solutions whose graphs have non-zero mean curvature, and we
present an inequality relating the mean curvature to the width of the domain
of certain solutions, those without critical points.
Keywords. Mean curvature · spacelike hypersurfaces · rotational hyper-
surfaces · elliptic partial differential equations.
MSC 2010 Classification. Primary: 53C42; Secondary: 35J93 · 53C50.

1 Introduction and background

Let us consider the differential operator given by

Q(u) = div

((
1√

1− |Du|2
− 1√

1 + |Du|2

)
Du

)
,

where u ∈ C2(Rn), and D, div and | · | stand for the gradient, the divergence
and the Euclidean norm on Rn, respectively. We are interested in studying the
equation

Q(u) = 0, with |Du| < 1. (1.1)
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The above divergence-type partial differential equation is not an arbitrary
one, it has a geometrical meaning.

A hypersurface in the Lorentz-Minkowski space Ln+1 is said to be spacelike
if its induced metric is a Riemannian one. Therefore, spacelike hypersurfaces in
Ln+1 can be endowed with two different Riemannian metrics, the metric induced
by the Euclidean space Rn+1 and the metric inherited from Ln+1. Consequently,
we can consider two different mean curvature functions on a spacelike hypersur-
face related to both metrics, HR and HL respectively.

On the other hand, it is well known that any spacelike hypersurface Σ in
Ln+1 can be locally described as a spacelike graph over an open subset of a
spacelike hyperplane, which without loss of generality can be supposed to be
the hyperplane xn+1 = 0 (see [4, Proposition 3.3]). Let u be the function that
describes such a graph, then the spatiality condition becomes |Du| < 1. The
functions HR and HL can be written in terms of the function u and its partial
derivatives obtaining the expressions

HR =
1

n
div

(
Du√

1 + |Du|2

)
and HL =

1

n
div

(
Du√

1− |Du|2

)
. (1.2)

Therefore, a spacelike graph determined by u satisfies HR = HL if and only if u
is a solution of (1.1). For this reason (1.1) is called the HR = HL hypersurface
equation. This equation is a quasilinear elliptic partial differential equation,
everywhere except at those points at which Du vanishes, where the equation is
parabolic, see [1].

As a particular case, we can consider the situation where the graph is si-
multaneously minimal and maximal, that is HR = HL = 0. The geometry of
minimal and maximal graphs has been widely studied. One of the main results
on minimal graphs is the well-known Bernstein theorem, proved by Bernstein [5]
in 1915, which states that the only entire minimal graphs in R3 are the planes.
Some decades later, in 1970, Calabi [7] proved its analogous version for spacelike
graphs in the Lorentz-Minkowski space, the Calabi-Bernstein theorem, which
states that the only entire maximal graphs in L3 are the spacelike planes. An
important difference between both results is that the Bernstein theorem can be
extended to minimal graphs in Rn+1 up to dimension n = 7, as it was proved
by Bombieri, di Giorgi and Giusti [6], but it is no longer true for higher dimen-
sions. However, the Calabi-Bernstein theorem holds true for any dimension as
it was proved by Calabi [7] for dimension n ≤ 4, and by Cheng and Yau [8] for
arbitrary dimension.

As an immediate consequence of the above results, we conclude that the only
entire graphs that are simultaneously minimal in Rn+1 and maximal in Ln+1

are the spacelike hyperplanes.
Going a step further, we can consider spacelike graphs with the same con-

stant mean curvature functions HR and HL. Heinz [11], Chern [9] and Flan-
ders [10] proved that the only entire graphs with constant mean curvature HR

in Rn+1 are the minimal graphs. The Lorentzian version of this fact is not true,
since there are examples of entire spacelike graphs with constant mean curva-
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ture HL in Ln+1 which are not maximal, for instance the hyperbolic spaces.
However, taking into account the Calabi-Bernstein theorem, we conclude again
that the only complete spacelike hypersurfaces in Ln+1 with the same constant
mean curvature functions HR and HL are the spacelike hyperplanes.

Kobayashi [12] studied the same problem without assuming any global hy-
pothesis. He showed that the graphs of the solutions to (1.1) with HR = HL = 0
are open pieces of a spacelike plane or of a helicoid, in the region where the heli-
coid is a spacelike surface. Recently, Albujer, Caballero and Sánchez [2, 3] have
continued with the study of spacelike surfaces with the same mean curvature
in R3 and in L3, not necessarily constant. On one hand, they have shown that
the Gaussian curvature in R3 of those surfaces is always non-positive and have
obtained several interesting consequences about the geometry of such surfaces.
On the other hand, they have obtained results on the solutions to the HR = HL

surface equation, which are not derived from the sign of the Gaussian curvature.
In general dimension, Lee and Lee [13] have recently presented non-planar ex-

amples of simultaneously minimal and maximal spacelike graphs in the Lorentz-
Minkowski space. Their examples can be seen as generalized ruled hypersur-
faces, in fact they are a natural generalization of helicoids. However, there is
no known classification of such hypersurfaces similar to Kobayashi’s result. In
[1] the authors have shown that those hypersurfaces do not have elliptic points
and have obtained several interesting consequences about the geometry of such
hypersurfaces, generalizing some results in [2].

In this manuscript we prove the existence of a solution to the HR = HL

hypersurface equation which constitutes the first evidence of the existence of
examples with non-zero mean curvature, following the ideas of the example
obtained in [3] in dimension 2. Finally, we generalize some results on the graphs
of the solutions which are not a consequence of the non-existence of elliptic
points, specifically Lemma 7, Theorem 8 and Corollary 1 from [2].

2 Preliminaries

Let Ln+1 be the (n + 1)-dimensional Lorentz-Minkowski space, that is, Rn+1

endowed with the metric

〈·, ·〉L = dx2
1 + ...+ dx2

n − dx2
n+1,

where (x1, ..., xn+1) are the canonical coordinates in Rn+1, and let | · |L denote
its norm. It is easy to see that the Levi-Civita connections of the Euclidean
space Rn+1 and the Lorentz-Minkowski space Ln+1 coincide, so we will just
denote it by ∇.

A (connected) hypersurface Σn in Ln+1 is said to be a spacelike hypersurface
if Ln+1 induces a Riemannian metric on Σ, which is also denoted by 〈·, ·〉L.
Given a spacelike hypersurface Σ, we can choose a unique future-directed unit
normal vector field NL on Σ. The mean curvature function of Σ with respect
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to NL is defined by

HL = − 1

n
(kL1 + ...+ kLn ),

where kLi , i = 1, ..., n, stand for the principal curvatures of (Σ, 〈·, ·〉L).
The same topological hypersurface can also be considered as a hypersurface

of the Euclidean space, that is Rn+1 with its usual Euclidean metric. For sim-
plicity, we will just denote the Euclidean space by Rn+1, the Euclidean metric
and the induced metric on Σ by 〈·, ·〉R, and its norm by | · |R. In such a case,
Σ admits a unique upwards directed unit normal vector field, NR. The mean
curvature function of Σ with respect to NR is defined by

HR =
1

n
(kR1 + ...+ kRn ),

where kRi , i = 1, ..., n, stand for the principal curvatures of (Σ, 〈·, ·〉R).
It is interesting to observe that the mean curvature functions have an ex-

pression in terms of the normal curvatures of any set of orthogonal directions.
Specifically,

HL = − 1

n
(κLw1

+ . . .+ κLwn
) and HR =

1

n
(κRv1 + . . .+ κRvn), (2.1)

where {v1, . . . , vn} and {w1, . . . , wn} are orthonormal basis of TpΣ with respect
to 〈·, ·〉R and 〈·, ·〉L, respectively.

If our spacelike hypersurface is the graph of a smooth function u ∈ C∞(Ω),

Σu = {(x1, ..., xn, u(x1, ..., xn)) : (x1, ..., xn) ∈ Ω},

Ω being an open subset of the hyperplane xn+1 = 0, which can be identified
with Rn, it is easy to check that the spatiality condition is written as |Du| < 1,
where D and | · | stand for the gradient operator and the norm in the Euclidean
space Rn, respectively. In this case, it is possible to get expressions for the
normal vector fields NL and NR, as well as for the mean curvature functions
HL and HR, in terms of u. Specifically, with a straightforward computation we
get

NL =
(Du, 1)√
1− |Du|2

and NR =
(−Du, 1)√
1 + |Du|2

. (2.2)

And for the mean curvature functions we have

HL =
1

n
div

(
Du√

1− |Du|2

)
and HR =

1

n
div

(
Du√

1 + |Du|2

)
, (2.3)

where div denotes the divergence operator in Rn.
Let us observe that

coshψ =
1√

1− |Du|2
and cos θ =

1√
1 + |Du|2

,

where ψ and θ denote the hyperbolic angle between NL and en+1 = (0, ..., 0, 1)
and the angle between NR and en+1, respectively.

The following result can be found in [2], and will be used in Section 4.
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Lemma 2.1. [2, Lemma 2] Let Σ be a spacelike hypersurface in Ln+1. Given
p ∈ Σ and v ∈ TpΣ, let κLv (p) and κRv (p) denote the normal curvatures at p in
the direction of v with respect to 〈·, ·〉L and 〈·, ·〉R, respectively. Then

|v|2R
cos θ(p)

κRv (p) = − |v|2L
coshψ(p)

κLv (p).

3 A solution with non-zero mean
curvature

Let us consider rotationally invariant spacelike graphs with respect to a vertical
axis. Therefore, we can assume without loss of generality that the graph Σ∗u is
determined by a function

u(x1, ..., xn) = f(r), r = x2
1 + ...+ x2

n, (3.1)

being f ∈ C∞(I) for certain I ⊆ [0,+∞). In this case, |Du| < 1 reads

4 (f ′(r))
2
r < 1 and the HR = HL hypersurface equation yields

2f ′′r + f ′n+ 4(f ′)3r(n− 1)

(1 + 4(f ′)2r)3/2
=

2f ′′r + f ′n− 4(f ′)3r(n− 1)

(1− 4(f ′)2r)3/2
. (3.2)

It can be checked that, given any set of initial conditions (r0, f(r0), f ′(r0)) such

that r0 > 0, f ′(r0) 6= 0 and 4 (f ′(r0))
2
r0 < 1, there exists a local solution

of (3.2) by the Picard-Lindelöf theorem.
It is interesting to observe that these examples cannot be entire because of

the following theorem which can be found in [1].

Theorem 3.1. The only entire spacelike graphs Σu determined by a function u
given by (3.1) such that HR = HL are the horizontal hyperplanes.

4 On the width of the domain of the
solutions

We define the width of a set in Rn as the supremum of the diameter of the closed
balls contained in it. This is an intuitive definition which is a generalization of
the classical concept of width for a convex body, see [15].

Let u be a solution to (1.1) over an open set Ω ⊆ Rn, Σu its graph and
π : Σu −→ Ω the canonical projection. We define Σ∗u as the graph of u over the
following open set

Ω∗ = {(x1, . . . , xn) ∈ Ω : Du(x1, . . . , xn) 6= 0}. (4.1)

The goal of this section is to give an upper bound for the width of the set
Ω∗. Before stating our main result, we get some previous local computations
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involving the Riemannian and Lorentzian normal curvatures of Σ∗u in some priv-
ileged directions. As well as a lemma relating the mean curvature of Σu to that
of its level hypersurfaces.

Given p ∈ Σ∗u, we consider its corresponding level hypersurface contained in

Rn, S̃c, and its lifting to Σu, Sc. We will work in a neighborhood of p, hence
we can assume that Sc lies on Σu. Since Du 6= 0 in Ω∗, this distribution is
integrable, so we can consider the integral curve through π(p). We denote by α
its lifting to Σ∗u. Notice that α′ = (Du, |Du|2) ◦ π.

Therefore, we have two submanifolds of Σ∗u, namely Sc and α, defined on a
neighborhood of p which are orthogonal at p for both 〈·, ·〉R and 〈·, ·〉L. Now,

let {e1, . . . , en−1} be an orthonormal basis of Tπ(p)S̃c. The vectors {(e1, 0), . . . ,
(en−1, 0)} constitute an orthonormal basis of TpSc in both Rn+1 and Ln+1, and
are orthogonal to α′ for both metrics. Then, Lemma 2.1 gives us the following
relationships, where we have omitted the point p on behalf of simplicity

κR(ei,0) = − cos θ

coshψ
κL(ei,0) = −

√
1− |Du|2
1 + |Du|2

κL(ei,0), i = 1, . . . , n− 1 and

κRα′ = −|α
′|2L
|α′|2R

cos θ

coshψ
κLα′ = −

(
1− |Du|2

1 + |Du|2

) 3
2

κLα′ .

By denoting A =
√

1−|Du|2
1+|Du|2 , we rewrite the previous expressions as

κR(ei,0) = −AκL(ei,0), i = 1, . . . , n− 1 and κRα′ = −A3 κLα′ . (4.2)

As we are dealing with orthogonal directions at p for both 〈·, ·〉R and 〈·, ·〉L,
and u is a solution of the HR = HL hypersurface equation, from (2.1) we get

−κL(e1,0) − . . .− κ
L
(en−1,0) − κ

L
α′ = κR(e1,0) + . . .+ κR(en−1,0) + κRα′ ,

which jointly with (4.2) implies

−κLα′ =
1

A2 +A+ 1
(κL(e1,0) + . . .+ κL(en−1,0)). (4.3)

Lemma 4.1. Let Σu be a spacelike graph in Ln+1 over a domain Ω ⊆ Rn such
that HR = HL. If S̃c denotes the level hypersurface u ≡ c in Ω∗ and Hc is its
mean curvature, then

|HL| ≤
n− 1

n
√

2
|Hc| ◦ π (4.4)

and the equality is hold if and only if HL = 0.

Proof. We work at a point p ∈ Sc and we follow the notation introduced at the
beginning of this section. For each i = 1, . . . , n we take a curve in S̃c, α̃i, with
α̃i(0) = p and α̃i

′(0) = ei. Let αi be its lifting to Sc. Notice that α′i = (α̃′i, 0).
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It is possible to relate the Lorentzian normal curvature κL(ei,0) of Σu at p in

the direction of α′i with the normal curvature κcei of S̃c at π(p) in the direction

of α̃i
′:

κL(ei,0) = 〈∇titi, NL〉L =
|Du|√

1− |Du|2

〈
Dt̃i

t̃i,
Du

|Du|

〉
Rn

◦π =
|Du|√

1− |Du|2
κcei◦π.

Here D and 〈·, ·〉Rn stand for the Levi-Civita connection and the usual metric

of the Euclidean space Rn, respectively, ti =
α′i
|α′i|L

, t̃i =
α̃i
′

|α̃i′|
and

Du

|Du|
is the

unitary normal vector field to S̃c in Rn.
Therefore, from (4.3) we get

n|HL| = (n− 1)
A+ 1

A2 +A+ 1

|Du|√
1 + |Du|2

|Hc| ◦ π ≤ (n− 1)f(|Du|) |Hc| ◦ π,

where f(x) = x√
1+x2

. Since f is increasing and |Du| < 1, we get (4.4).

Theorem 4.2. Let u be a solution to the HR = HL hypersurface equation
defined on an open set Ω ⊆ Rn. Then

width(Ω∗) ≤
√

2 (n− 1)

n infΩ∗ |HL|
. (4.5)

Proof. If infΩ∗ |HL| = 0, there is nothing to prove.
Otherwise, we have |HL| ≥ infΩ∗ |HL| = C > 0 in Σ∗u. And, as a consequence

of (4.4), we get

|Hc| >
nC
√

2

n− 1
> 0 in Ω∗. (4.6)

First of all, let us notice that Ω∗ is an open set of Rn. We consider all the
level hypersurfaces in Ω∗, we order them by the value of u on each of them and
we orient them in a way such that its normal vectors point to the direction on
which u decreases.

We proceed by reductio ad absurdum assuming that the width of Ω∗ is

bigger than
(n− 1)

√
2

nC
. Then, there exists a point q ∈ Ω∗ such that B̄q =

B̄q
(
(n− 1)/n

√
2C
)
⊂ Ω∗. Since B̄q is compact, u attains a maximum in it.

Even more, Du does not vanish in Bq = Bq
(
(n− 1)/n

√
2C
)
, and so this ex-

tremal value is only attained on the boundary of the ball.
We pick a point p at which a maximum is attained. The level hypersurface

through p lies in Ω∗ \Bq. And so, it is tangent to the boundary of the ball at p.
The normal vector to the hypersurface at p points to the interior of the ball, see
Figure 1. Consequently, using the tangency principle (see [14, Theorem 3.2.4]
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Figure 1: Level hypersurface at p.

for the 2-dimensional case), inequality (4.6) implies that Hc ≤ −n
√

2C/(n− 1)
at p. Analogously, we get that Hc ≥ n

√
2C/(n − 1) at p̄, p̄ being a point at

which u attains a minimum in the ball. By a continuity argument, there is a
point in the ball at which Hc vanishes, which is a contradiction.

As a direct consequence of Theorem 4.2, we get the following results.

Corollary 4.3. Let u be a solution to the HR = HL hypersurface equation
defined on an open set Ω ⊆ Rn and assume that Ω∗ is a set of infinite width.
Then infΣu

|HL| = 0.
Equivalently, there do not exist spacelike graphs satisfying HR = HL, |HL| ≥

C for a certain constant C > 0 and width(Ω∗) =∞.

Corollary 4.4. Let u be a solution to the HR = HL hypersurface equation
defined on an open set Ω ⊆ Rn with constant mean curvature. Then

width(Ω∗) ≤
√

2 (n− 1)

n |HL|
.
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dérivées partielles du type elliptique, Comm. Inst. Sci. Math. Mech. Univ.
Kharkov 15 (1915-17), 38–45.

[6] Bombieri, E., De Giorgi, E., Giusti, E., Minimal cones and the Bernstein
problem, Invent. Math 7 (1969), 243–268.

[7] Calabi, E., Examples of Bernstein problems for some nonlinear equations,
Proc. Symp. Pure Math. 15 (1970), 223–230.

[8] Cheng, S. Y., Yau, S. T., Maximal spacelike hypersurfaces in the Lorentz-
Minkowski space, Ann. of Math. 140 (1976), 407–419.

[9] Chern, S.-S., On the curvatures of a piece of hypersurface in euclidean
space, Abh. Math. Sem. Univ. Hamburg. 29 (1965), 77–91.

[10] Flanders, H., Remark on mean curvature, J. London Math. Soc. 41 (1966),
364–366.
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